法学硕士辅助定性数据分析:游戏化劳动力研究中的安全和隐私问题

Aisvarya Adeseye , Jouni Isoaho , Tahir Mohammad
{"title":"法学硕士辅助定性数据分析:游戏化劳动力研究中的安全和隐私问题","authors":"Aisvarya Adeseye ,&nbsp;Jouni Isoaho ,&nbsp;Tahir Mohammad","doi":"10.1016/j.procs.2025.03.011","DOIUrl":null,"url":null,"abstract":"<div><div>Large language models (LLMs) have transformed textual or qualitative data processing and analysis by automating and enhancing interpretive accuracy, particularly in complex areas like cybersecurity, ethics, and compliance. This study examines the effective-ness of local LLMs in analyzing qualitative research using the data gathered from the case study on “perspectives on security and privacy issues associated with the introduction of gamified workforce studies”. The research presented in this paper utilized 23 interview transcripts to evaluate three popular LLMs, namely LLaMA, Gemma, and Phi, running on a local infrastructure. We observed that LLaMA focuses on practical data security, Gemma on regulatory compliance, and Phi on ethical transparency and trust-building. By combining these models, researchers can gain a more comprehensive understanding of the complex implications of gamification in workforce studies. Local LLMs provide the added benefit of enhanced data privacy and security by processing sensitive data entirely within a controlled environment. This study explores the system and user prompts that can improve the interpretive accuracy of various qualitative research approaches, such as thematic analysis, frequency analysis, impact level analysis, sensitivity analysis, and disclosure analysis, demonstrating the potential of local LLMs for qualitative analysis for sensitive data. This study recommends the usage of LLMs for the initial stage of the qualitative analysis process to enhance the efficiency and effectiveness of subsequent completely manual or software-assisted manual analysis.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"257 ","pages":"Pages 60-67"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LLM-Assisted Qualitative Data Analysis: Security and Privacy Concerns in Gamified Workforce Studies\",\"authors\":\"Aisvarya Adeseye ,&nbsp;Jouni Isoaho ,&nbsp;Tahir Mohammad\",\"doi\":\"10.1016/j.procs.2025.03.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large language models (LLMs) have transformed textual or qualitative data processing and analysis by automating and enhancing interpretive accuracy, particularly in complex areas like cybersecurity, ethics, and compliance. This study examines the effective-ness of local LLMs in analyzing qualitative research using the data gathered from the case study on “perspectives on security and privacy issues associated with the introduction of gamified workforce studies”. The research presented in this paper utilized 23 interview transcripts to evaluate three popular LLMs, namely LLaMA, Gemma, and Phi, running on a local infrastructure. We observed that LLaMA focuses on practical data security, Gemma on regulatory compliance, and Phi on ethical transparency and trust-building. By combining these models, researchers can gain a more comprehensive understanding of the complex implications of gamification in workforce studies. Local LLMs provide the added benefit of enhanced data privacy and security by processing sensitive data entirely within a controlled environment. This study explores the system and user prompts that can improve the interpretive accuracy of various qualitative research approaches, such as thematic analysis, frequency analysis, impact level analysis, sensitivity analysis, and disclosure analysis, demonstrating the potential of local LLMs for qualitative analysis for sensitive data. This study recommends the usage of LLMs for the initial stage of the qualitative analysis process to enhance the efficiency and effectiveness of subsequent completely manual or software-assisted manual analysis.</div></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"257 \",\"pages\":\"Pages 60-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050925007471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925007471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)已经通过自动化和提高解释准确性来改变文本或定性数据处理和分析,特别是在网络安全、道德和合规等复杂领域。本研究利用从“引入游戏化劳动力研究相关的安全和隐私问题视角”的案例研究中收集的数据,检验了本地法学硕士在分析定性研究方面的有效性。本文的研究利用23个访谈记录来评估在当地基础设施上运行的三种流行的llm,即LLaMA, Gemma和Phi。我们观察到,LLaMA侧重于实际数据安全,Gemma侧重于监管合规,Phi侧重于道德透明度和信任建立。通过结合这些模型,研究人员可以更全面地了解劳动力研究中游戏化的复杂含义。本地llm通过完全在受控环境中处理敏感数据,提供了增强数据隐私和安全性的额外好处。本研究探讨了可以提高专题分析、频率分析、影响水平分析、敏感性分析和披露分析等各种定性研究方法解释准确性的系统和用户提示,展示了地方法学硕士对敏感数据进行定性分析的潜力。本研究建议在定性分析过程的初始阶段使用llm,以提高后续完全手工或软件辅助手工分析的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LLM-Assisted Qualitative Data Analysis: Security and Privacy Concerns in Gamified Workforce Studies
Large language models (LLMs) have transformed textual or qualitative data processing and analysis by automating and enhancing interpretive accuracy, particularly in complex areas like cybersecurity, ethics, and compliance. This study examines the effective-ness of local LLMs in analyzing qualitative research using the data gathered from the case study on “perspectives on security and privacy issues associated with the introduction of gamified workforce studies”. The research presented in this paper utilized 23 interview transcripts to evaluate three popular LLMs, namely LLaMA, Gemma, and Phi, running on a local infrastructure. We observed that LLaMA focuses on practical data security, Gemma on regulatory compliance, and Phi on ethical transparency and trust-building. By combining these models, researchers can gain a more comprehensive understanding of the complex implications of gamification in workforce studies. Local LLMs provide the added benefit of enhanced data privacy and security by processing sensitive data entirely within a controlled environment. This study explores the system and user prompts that can improve the interpretive accuracy of various qualitative research approaches, such as thematic analysis, frequency analysis, impact level analysis, sensitivity analysis, and disclosure analysis, demonstrating the potential of local LLMs for qualitative analysis for sensitive data. This study recommends the usage of LLMs for the initial stage of the qualitative analysis process to enhance the efficiency and effectiveness of subsequent completely manual or software-assisted manual analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信