E-Mamba:一种高效的Mamba点云分析方法,具有增强的特征表示

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dengao Li , Zhichao Gao , Shufeng Hao , Ziyou Xun , Jiajian Song , Jie Cheng , Jumin Zhao
{"title":"E-Mamba:一种高效的Mamba点云分析方法,具有增强的特征表示","authors":"Dengao Li ,&nbsp;Zhichao Gao ,&nbsp;Shufeng Hao ,&nbsp;Ziyou Xun ,&nbsp;Jiajian Song ,&nbsp;Jie Cheng ,&nbsp;Jumin Zhao","doi":"10.1016/j.neucom.2025.130201","DOIUrl":null,"url":null,"abstract":"<div><div>As a key technology for three-dimensional space analysis, point cloud analysis is widely used in many fields such as automated machinery, unmanned vehicles and virtual reality. Learning local and global features of point cloud is crucial for gaining a deep understanding of point cloud data. In point cloud local feature learning, sub-clouds with center coordinates subtracted are usually used as point patches, which are then input into mini-PointNet to enhance the point cloud feature representation. However, this method has a high dependence on the point cloud density, which affects the model performance. In this work, we introduce E-Mamba, a new model for efficient point cloud analysis. We use Scalable Embedding to rescale and patch embedding sub-clouds, which improves the model’s feature representation and generalization capabilities for point cloud. In addition, we also introduced Holosync Reordering Pooling to reorder tokens while preserving the original sequence, and used the hybrid pooling method to extract global features. In this way, the model fully utilizes the periodicity of Mamba while achieving good generalization and global feature extraction capabilities. We conduct extensive experiments on ModelNet40, ScanObjectNN, and ShapeNetPart datasets. The results show that E-Mamba can achieve superior performance while significantly reducing GPU memory usage and FLOPs, whether pre-trained or not.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"639 ","pages":"Article 130201"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-Mamba: An efficient Mamba point cloud analysis method with enhanced feature representation\",\"authors\":\"Dengao Li ,&nbsp;Zhichao Gao ,&nbsp;Shufeng Hao ,&nbsp;Ziyou Xun ,&nbsp;Jiajian Song ,&nbsp;Jie Cheng ,&nbsp;Jumin Zhao\",\"doi\":\"10.1016/j.neucom.2025.130201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a key technology for three-dimensional space analysis, point cloud analysis is widely used in many fields such as automated machinery, unmanned vehicles and virtual reality. Learning local and global features of point cloud is crucial for gaining a deep understanding of point cloud data. In point cloud local feature learning, sub-clouds with center coordinates subtracted are usually used as point patches, which are then input into mini-PointNet to enhance the point cloud feature representation. However, this method has a high dependence on the point cloud density, which affects the model performance. In this work, we introduce E-Mamba, a new model for efficient point cloud analysis. We use Scalable Embedding to rescale and patch embedding sub-clouds, which improves the model’s feature representation and generalization capabilities for point cloud. In addition, we also introduced Holosync Reordering Pooling to reorder tokens while preserving the original sequence, and used the hybrid pooling method to extract global features. In this way, the model fully utilizes the periodicity of Mamba while achieving good generalization and global feature extraction capabilities. We conduct extensive experiments on ModelNet40, ScanObjectNN, and ShapeNetPart datasets. The results show that E-Mamba can achieve superior performance while significantly reducing GPU memory usage and FLOPs, whether pre-trained or not.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"639 \",\"pages\":\"Article 130201\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225008732\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225008732","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

点云分析作为三维空间分析的关键技术,被广泛应用于自动化机械、无人驾驶车辆、虚拟现实等诸多领域。学习点云的局部和全局特征对于深入理解点云数据至关重要。在点云局部特征学习中,通常使用减去中心坐标的子云作为点补丁,然后将其输入到mini-PointNet中以增强点云特征的表示。然而,该方法对点云密度的依赖性较大,影响了模型的性能。本文介绍了一种新的点云分析模型E-Mamba。我们使用可缩放嵌入技术对子云进行重新缩放和补丁嵌入,提高了模型对点云的特征表示和泛化能力。此外,我们还引入了Holosync重新排序池,在保留原始序列的情况下对令牌进行重新排序,并使用混合池方法提取全局特征。这样,该模型充分利用了曼巴的周期性,同时具有良好的泛化能力和全局特征提取能力。我们在ModelNet40、ScanObjectNN和ShapeNetPart数据集上进行了广泛的实验。结果表明,无论是否进行预训练,E-Mamba都可以在显著降低GPU内存使用和FLOPs的同时实现卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-Mamba: An efficient Mamba point cloud analysis method with enhanced feature representation
As a key technology for three-dimensional space analysis, point cloud analysis is widely used in many fields such as automated machinery, unmanned vehicles and virtual reality. Learning local and global features of point cloud is crucial for gaining a deep understanding of point cloud data. In point cloud local feature learning, sub-clouds with center coordinates subtracted are usually used as point patches, which are then input into mini-PointNet to enhance the point cloud feature representation. However, this method has a high dependence on the point cloud density, which affects the model performance. In this work, we introduce E-Mamba, a new model for efficient point cloud analysis. We use Scalable Embedding to rescale and patch embedding sub-clouds, which improves the model’s feature representation and generalization capabilities for point cloud. In addition, we also introduced Holosync Reordering Pooling to reorder tokens while preserving the original sequence, and used the hybrid pooling method to extract global features. In this way, the model fully utilizes the periodicity of Mamba while achieving good generalization and global feature extraction capabilities. We conduct extensive experiments on ModelNet40, ScanObjectNN, and ShapeNetPart datasets. The results show that E-Mamba can achieve superior performance while significantly reducing GPU memory usage and FLOPs, whether pre-trained or not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信