Shu Peng , Hongyu Li , Yujie Deng , Hong Yu , Weibo Yi , Ke Liu
{"title":"SSSI-L2p:一种基于l2p范数的结构化稀疏正则化的脑电图扩展源成像算法","authors":"Shu Peng , Hongyu Li , Yujie Deng , Hong Yu , Weibo Yi , Ke Liu","doi":"10.1016/j.neucom.2025.130250","DOIUrl":null,"url":null,"abstract":"<div><div>Electroencephalographic (EEG) source imaging (ESI) aims to estimate brain activity locations and extents. ESI is crucial for studying brain functions and detecting epileptic foci. However, accurately reconstructing extended sources remains challenging due to high susceptibility of EEG signals to interference and the underdetermined nature of the ESI problem. In this study, we introduce a new ESI algorithm, Structured Sparse Source Imaging based on <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span>-norm (SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span>), to estimate potential brain activities. SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> utilizes the mixed <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span>-norm (<span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn></mrow></math></span>) to enforce spatial–temporal constraints within a structured sparsity regularization framework. By leveraging the alternating direction method of multipliers (ADMM) and iteratively reweighted least squares (IRLS) algorithm, the challenging optimization problem of SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> can be effectively solved. We showcase the superior performance of SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> over benchmark ESI methods through numerical simulations and human clinical data. Our results demonstrate that sources reconstructed by SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> exhibit high spatial resolution and clear boundaries, highlighting its potential as a robust and effective ESI technique. Additionally, we have shared the source code of SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> at <span><span>https://github.com/Mashirops/SSSI-L2p.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"639 ","pages":"Article 130250"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SSSI-L2p: An EEG extended source imaging algorithm based on the structured sparse regularization with L2p-Norm\",\"authors\":\"Shu Peng , Hongyu Li , Yujie Deng , Hong Yu , Weibo Yi , Ke Liu\",\"doi\":\"10.1016/j.neucom.2025.130250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electroencephalographic (EEG) source imaging (ESI) aims to estimate brain activity locations and extents. ESI is crucial for studying brain functions and detecting epileptic foci. However, accurately reconstructing extended sources remains challenging due to high susceptibility of EEG signals to interference and the underdetermined nature of the ESI problem. In this study, we introduce a new ESI algorithm, Structured Sparse Source Imaging based on <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span>-norm (SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span>), to estimate potential brain activities. SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> utilizes the mixed <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span>-norm (<span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn></mrow></math></span>) to enforce spatial–temporal constraints within a structured sparsity regularization framework. By leveraging the alternating direction method of multipliers (ADMM) and iteratively reweighted least squares (IRLS) algorithm, the challenging optimization problem of SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> can be effectively solved. We showcase the superior performance of SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> over benchmark ESI methods through numerical simulations and human clinical data. Our results demonstrate that sources reconstructed by SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> exhibit high spatial resolution and clear boundaries, highlighting its potential as a robust and effective ESI technique. Additionally, we have shared the source code of SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> at <span><span>https://github.com/Mashirops/SSSI-L2p.git</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"639 \",\"pages\":\"Article 130250\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225009221\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225009221","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
SSSI-L2p: An EEG extended source imaging algorithm based on the structured sparse regularization with L2p-Norm
Electroencephalographic (EEG) source imaging (ESI) aims to estimate brain activity locations and extents. ESI is crucial for studying brain functions and detecting epileptic foci. However, accurately reconstructing extended sources remains challenging due to high susceptibility of EEG signals to interference and the underdetermined nature of the ESI problem. In this study, we introduce a new ESI algorithm, Structured Sparse Source Imaging based on -norm (SSSI-), to estimate potential brain activities. SSSI- utilizes the mixed -norm () to enforce spatial–temporal constraints within a structured sparsity regularization framework. By leveraging the alternating direction method of multipliers (ADMM) and iteratively reweighted least squares (IRLS) algorithm, the challenging optimization problem of SSSI- can be effectively solved. We showcase the superior performance of SSSI- over benchmark ESI methods through numerical simulations and human clinical data. Our results demonstrate that sources reconstructed by SSSI- exhibit high spatial resolution and clear boundaries, highlighting its potential as a robust and effective ESI technique. Additionally, we have shared the source code of SSSI- at https://github.com/Mashirops/SSSI-L2p.git.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.