Abdul Khayum Mohammed , J. Niklas Hausmann , Safa Gaber , Pilar Pena Sánchez , Felipe Gándara , Konstantin Laun , Ingo Zebger , Prashanth W. Menezes , Dinesh Shetty
{"title":"电催化5-羟甲基糠醛氧化中共轭镍有机骨架原位转化为活性氢氧化镍的研究","authors":"Abdul Khayum Mohammed , J. Niklas Hausmann , Safa Gaber , Pilar Pena Sánchez , Felipe Gándara , Konstantin Laun , Ingo Zebger , Prashanth W. Menezes , Dinesh Shetty","doi":"10.1016/j.jcis.2025.137630","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing electrical energy for the targeted conversion of biomass into valuable molecules is a crucial building block for a future circular economy. Herein, a Nickel (Ni)-based conjugated metal–organic framework (MOF) having salicylaldehydate linkages (1, 3, 5-triformylphloroglucinol: Tp) was synthesized via a solid-state process. The resulting 2D framework (Ni-Tp) demonstrates a highly selective electrocatalytic conversion of 5-hydroxymethylfural (HMF) to 2, 5-furandicarboxylic acid (FDCA) with excellent faradaic efficiency (96 ± 4 %). In-situ Raman and X-ray absorption spectroscopy (XAS) reveal that Ni-Tp acts as a precatalyst for uniformly dispersed nickel (oxy)hydroxide (NiOOH) in the electrocatalytic organic oxidation reaction (OOR) process. The combination of efficient electron transport of the Ni-Tp and the uniform dispersion of newly formed nickel (oxy)hydroxide with excellent electrolyte availability leads to redox (and potentially catalytic) activity of all in situ formed nickel sites. Thus, the Ni-Tp is an ideal precatalyst in terms of nickel (oxy)hydroxide active site exposure. This work demonstrates a cost-effective method for synthesizing efficient MOF-based electrocatalysts for a relevant catalytic reaction.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"694 ","pages":"Article 137630"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ transformation of a conjugated nickel-organic framework into active nickel oxyhydroxide for electrocatalytic 5-hydroxymethylfurfural oxidation\",\"authors\":\"Abdul Khayum Mohammed , J. Niklas Hausmann , Safa Gaber , Pilar Pena Sánchez , Felipe Gándara , Konstantin Laun , Ingo Zebger , Prashanth W. Menezes , Dinesh Shetty\",\"doi\":\"10.1016/j.jcis.2025.137630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Utilizing electrical energy for the targeted conversion of biomass into valuable molecules is a crucial building block for a future circular economy. Herein, a Nickel (Ni)-based conjugated metal–organic framework (MOF) having salicylaldehydate linkages (1, 3, 5-triformylphloroglucinol: Tp) was synthesized via a solid-state process. The resulting 2D framework (Ni-Tp) demonstrates a highly selective electrocatalytic conversion of 5-hydroxymethylfural (HMF) to 2, 5-furandicarboxylic acid (FDCA) with excellent faradaic efficiency (96 ± 4 %). In-situ Raman and X-ray absorption spectroscopy (XAS) reveal that Ni-Tp acts as a precatalyst for uniformly dispersed nickel (oxy)hydroxide (NiOOH) in the electrocatalytic organic oxidation reaction (OOR) process. The combination of efficient electron transport of the Ni-Tp and the uniform dispersion of newly formed nickel (oxy)hydroxide with excellent electrolyte availability leads to redox (and potentially catalytic) activity of all in situ formed nickel sites. Thus, the Ni-Tp is an ideal precatalyst in terms of nickel (oxy)hydroxide active site exposure. This work demonstrates a cost-effective method for synthesizing efficient MOF-based electrocatalysts for a relevant catalytic reaction.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"694 \",\"pages\":\"Article 137630\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725010215\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725010215","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In-situ transformation of a conjugated nickel-organic framework into active nickel oxyhydroxide for electrocatalytic 5-hydroxymethylfurfural oxidation
Utilizing electrical energy for the targeted conversion of biomass into valuable molecules is a crucial building block for a future circular economy. Herein, a Nickel (Ni)-based conjugated metal–organic framework (MOF) having salicylaldehydate linkages (1, 3, 5-triformylphloroglucinol: Tp) was synthesized via a solid-state process. The resulting 2D framework (Ni-Tp) demonstrates a highly selective electrocatalytic conversion of 5-hydroxymethylfural (HMF) to 2, 5-furandicarboxylic acid (FDCA) with excellent faradaic efficiency (96 ± 4 %). In-situ Raman and X-ray absorption spectroscopy (XAS) reveal that Ni-Tp acts as a precatalyst for uniformly dispersed nickel (oxy)hydroxide (NiOOH) in the electrocatalytic organic oxidation reaction (OOR) process. The combination of efficient electron transport of the Ni-Tp and the uniform dispersion of newly formed nickel (oxy)hydroxide with excellent electrolyte availability leads to redox (and potentially catalytic) activity of all in situ formed nickel sites. Thus, the Ni-Tp is an ideal precatalyst in terms of nickel (oxy)hydroxide active site exposure. This work demonstrates a cost-effective method for synthesizing efficient MOF-based electrocatalysts for a relevant catalytic reaction.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies