Trung H. Nguyen , Simon Jones , Karin J Reinke , Mariela Soto-Berelov
{"title":"利用机载激光雷达和库存数据对温带桉树林中多层精细燃料负载进行建模","authors":"Trung H. Nguyen , Simon Jones , Karin J Reinke , Mariela Soto-Berelov","doi":"10.1016/j.srs.2025.100226","DOIUrl":null,"url":null,"abstract":"<div><div>Wildfires are increasing in intensity and frequency due to climate change and land-use changes, posing critical threats to ecosystems, economies, and human safety. Fine fuels (<6 mm, such as leaves and twigs) are known key drivers of wildfire ignition and spread, particularly in temperate forests where high flammability increases wildfire hazard. Accurately quantifying fine fuel loads (FFL) across vertical forest layers is essential for understanding and predicting wildfire behaviour, yet past studies using Airborne Laser Scanning (ALS) have been limited to canopy fuels, overlooking surface and understorey layers that play a key role in wildfire propagation. This study addresses this gap by developing an ALS-based modelling approach to estimate FFL across four vertical layers: canopy, elevated (or ladder), near-surface, and surface. The study was conducted in eucalypt-dominated forests in Victoria, southeastern Australia. We stratified ALS point clouds into distinct layers (overstorey, intermediate, shrub, and herb), computed layer-specific structural metrics, and trained Random Forest models to predict multi-layer FFL. The models performed well, with the highest accuracy for canopy FFL (R<sup>2</sup> = 0.74, relative RMSE = 49.42 %) and moderate accuracy for elevated, near-surface, and surface FFL (R<sup>2</sup> = 0.42–0.56, relative RMSE = 59.77–77.57 %). Model interpretation revealed that integrating ALS metrics from multiple forest layers maximised accuracy and highlighted the complex role of vertical forest structure in predicting FFL. Prediction maps captured horizontal and vertical FFL variations across landscapes, reflecting differences in forest structure. Furthermore, pre-fire FFL, especially in surface and canopy layers, showed statistically significant associations with wildfire-induced forest loss. This study advances multi-layer FFL estimation using ALS data, offering a more comprehensive fuel information for wildfire hazard assessment and forest management. Future research should explore the scalability of this method by integrating satellite-derived data to extend FFL mapping at broader spatial scales.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100226"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling multi-layer fine fuel loads in temperate eucalypt forests using airborne LiDAR and inventory data\",\"authors\":\"Trung H. Nguyen , Simon Jones , Karin J Reinke , Mariela Soto-Berelov\",\"doi\":\"10.1016/j.srs.2025.100226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wildfires are increasing in intensity and frequency due to climate change and land-use changes, posing critical threats to ecosystems, economies, and human safety. Fine fuels (<6 mm, such as leaves and twigs) are known key drivers of wildfire ignition and spread, particularly in temperate forests where high flammability increases wildfire hazard. Accurately quantifying fine fuel loads (FFL) across vertical forest layers is essential for understanding and predicting wildfire behaviour, yet past studies using Airborne Laser Scanning (ALS) have been limited to canopy fuels, overlooking surface and understorey layers that play a key role in wildfire propagation. This study addresses this gap by developing an ALS-based modelling approach to estimate FFL across four vertical layers: canopy, elevated (or ladder), near-surface, and surface. The study was conducted in eucalypt-dominated forests in Victoria, southeastern Australia. We stratified ALS point clouds into distinct layers (overstorey, intermediate, shrub, and herb), computed layer-specific structural metrics, and trained Random Forest models to predict multi-layer FFL. The models performed well, with the highest accuracy for canopy FFL (R<sup>2</sup> = 0.74, relative RMSE = 49.42 %) and moderate accuracy for elevated, near-surface, and surface FFL (R<sup>2</sup> = 0.42–0.56, relative RMSE = 59.77–77.57 %). Model interpretation revealed that integrating ALS metrics from multiple forest layers maximised accuracy and highlighted the complex role of vertical forest structure in predicting FFL. Prediction maps captured horizontal and vertical FFL variations across landscapes, reflecting differences in forest structure. Furthermore, pre-fire FFL, especially in surface and canopy layers, showed statistically significant associations with wildfire-induced forest loss. This study advances multi-layer FFL estimation using ALS data, offering a more comprehensive fuel information for wildfire hazard assessment and forest management. Future research should explore the scalability of this method by integrating satellite-derived data to extend FFL mapping at broader spatial scales.</div></div>\",\"PeriodicalId\":101147,\"journal\":{\"name\":\"Science of Remote Sensing\",\"volume\":\"11 \",\"pages\":\"Article 100226\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266601722500032X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266601722500032X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Modelling multi-layer fine fuel loads in temperate eucalypt forests using airborne LiDAR and inventory data
Wildfires are increasing in intensity and frequency due to climate change and land-use changes, posing critical threats to ecosystems, economies, and human safety. Fine fuels (<6 mm, such as leaves and twigs) are known key drivers of wildfire ignition and spread, particularly in temperate forests where high flammability increases wildfire hazard. Accurately quantifying fine fuel loads (FFL) across vertical forest layers is essential for understanding and predicting wildfire behaviour, yet past studies using Airborne Laser Scanning (ALS) have been limited to canopy fuels, overlooking surface and understorey layers that play a key role in wildfire propagation. This study addresses this gap by developing an ALS-based modelling approach to estimate FFL across four vertical layers: canopy, elevated (or ladder), near-surface, and surface. The study was conducted in eucalypt-dominated forests in Victoria, southeastern Australia. We stratified ALS point clouds into distinct layers (overstorey, intermediate, shrub, and herb), computed layer-specific structural metrics, and trained Random Forest models to predict multi-layer FFL. The models performed well, with the highest accuracy for canopy FFL (R2 = 0.74, relative RMSE = 49.42 %) and moderate accuracy for elevated, near-surface, and surface FFL (R2 = 0.42–0.56, relative RMSE = 59.77–77.57 %). Model interpretation revealed that integrating ALS metrics from multiple forest layers maximised accuracy and highlighted the complex role of vertical forest structure in predicting FFL. Prediction maps captured horizontal and vertical FFL variations across landscapes, reflecting differences in forest structure. Furthermore, pre-fire FFL, especially in surface and canopy layers, showed statistically significant associations with wildfire-induced forest loss. This study advances multi-layer FFL estimation using ALS data, offering a more comprehensive fuel information for wildfire hazard assessment and forest management. Future research should explore the scalability of this method by integrating satellite-derived data to extend FFL mapping at broader spatial scales.