结合字典知识和中性特征的预训练语言模型的金融情绪分析

Yongyong Sun, Haiping Yuan, Fei Xu
{"title":"结合字典知识和中性特征的预训练语言模型的金融情绪分析","authors":"Yongyong Sun,&nbsp;Haiping Yuan,&nbsp;Fei Xu","doi":"10.1016/j.nlp.2025.100148","DOIUrl":null,"url":null,"abstract":"<div><div>With increasing financial market complexity, accurate sentiment analysis of financial texts has become crucial. Traditional methods often misinterpret financial terminology and show high error rates in neutral sentiment recognition. This study aims to improve financial sentiment analysis accuracy through developing EnhancedFinSentiBERT, a model incorporating financial domain pre-training, dictionary knowledge embedding, and neutral feature extraction. Experiments on the FinancialPhraseBank, FiQA and Headline datasets demonstrate the model’s superior performance compared to mainstream methods, particularly in neutral sentiment recognition. Ablation analysis reveals that dictionary knowledge embedding and neutral feature extraction contribute most significantly to model improvement.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"11 ","pages":"Article 100148"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial sentiment analysis for pre-trained language models incorporating dictionary knowledge and neutral features\",\"authors\":\"Yongyong Sun,&nbsp;Haiping Yuan,&nbsp;Fei Xu\",\"doi\":\"10.1016/j.nlp.2025.100148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With increasing financial market complexity, accurate sentiment analysis of financial texts has become crucial. Traditional methods often misinterpret financial terminology and show high error rates in neutral sentiment recognition. This study aims to improve financial sentiment analysis accuracy through developing EnhancedFinSentiBERT, a model incorporating financial domain pre-training, dictionary knowledge embedding, and neutral feature extraction. Experiments on the FinancialPhraseBank, FiQA and Headline datasets demonstrate the model’s superior performance compared to mainstream methods, particularly in neutral sentiment recognition. Ablation analysis reveals that dictionary knowledge embedding and neutral feature extraction contribute most significantly to model improvement.</div></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"11 \",\"pages\":\"Article 100148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294971912500024X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294971912500024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着金融市场日益复杂,对金融文本进行准确的情绪分析变得至关重要。传统方法对金融术语的理解存在误解,在中性情绪识别中存在较高的误差率。本研究旨在通过开发融合金融领域预训练、字典知识嵌入和中性特征提取的EnhancedFinSentiBERT模型来提高金融情绪分析的准确性。在FinancialPhraseBank、FiQA和Headline数据集上的实验表明,与主流方法相比,该模型的性能更好,特别是在中性情绪识别方面。消融分析表明,字典知识嵌入和中性特征提取对模型改进的贡献最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Financial sentiment analysis for pre-trained language models incorporating dictionary knowledge and neutral features
With increasing financial market complexity, accurate sentiment analysis of financial texts has become crucial. Traditional methods often misinterpret financial terminology and show high error rates in neutral sentiment recognition. This study aims to improve financial sentiment analysis accuracy through developing EnhancedFinSentiBERT, a model incorporating financial domain pre-training, dictionary knowledge embedding, and neutral feature extraction. Experiments on the FinancialPhraseBank, FiQA and Headline datasets demonstrate the model’s superior performance compared to mainstream methods, particularly in neutral sentiment recognition. Ablation analysis reveals that dictionary knowledge embedding and neutral feature extraction contribute most significantly to model improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信