Jixiang Ding , Zhengding Zheng , Shayu Song , Long Bai , Jianfeng Xu , Jianguo Zhang , Wenjie Chen
{"title":"走向激光辅助切割:颗粒增强金属基复合材料中增强颗粒的实时分割方法","authors":"Jixiang Ding , Zhengding Zheng , Shayu Song , Long Bai , Jianfeng Xu , Jianguo Zhang , Wenjie Chen","doi":"10.1016/j.compind.2025.104305","DOIUrl":null,"url":null,"abstract":"<div><div>Particle-reinforced metal matrix composites (PRMMCs) are widely used because of their exceptional material properties. Online control of the laser field to soften and modify the reinforcing particles on the machined surface of the composites is an effective way to improve the machinability and machining quality of PRMMCs. A real-time segmentation method for reinforcing particles in PRMMCs is proposed. First, real-time acquisition of reinforcing particle images along the processing path is achieved using machine vision, and cutting region images are determined. Next, to improve the model’s ability to effectively segment the reinforcing particles in low-resolution images of the machining region, a reinforcing particle segmentation network (RPSNet) is proposed, incorporating a multimodal fusion and space-to-depth convolution module. Subsequently, position signals along the cutting direction are obtained by using a sliding window method. The effectiveness of each module and the performance of the model are analyzed and verified through comparative and ablation experiments. The results demonstrated that the proposed RPSNet achieved a mean average precision (mAP) of 95.4 % in segmenting reinforcing particles, with an inference time of 5.8 ms. In comparison to other methods, it demonstrated better real-time performance and accuracy. Additionally, the proposed method can convert image information into position signals, thus enabling real-time control of the laser for softening and modifying the reinforcing particles.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"169 ","pages":"Article 104305"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward laser-assisted cutting: A real-time segmentation method for reinforcing particles in particle-reinforced metal matrix composites\",\"authors\":\"Jixiang Ding , Zhengding Zheng , Shayu Song , Long Bai , Jianfeng Xu , Jianguo Zhang , Wenjie Chen\",\"doi\":\"10.1016/j.compind.2025.104305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Particle-reinforced metal matrix composites (PRMMCs) are widely used because of their exceptional material properties. Online control of the laser field to soften and modify the reinforcing particles on the machined surface of the composites is an effective way to improve the machinability and machining quality of PRMMCs. A real-time segmentation method for reinforcing particles in PRMMCs is proposed. First, real-time acquisition of reinforcing particle images along the processing path is achieved using machine vision, and cutting region images are determined. Next, to improve the model’s ability to effectively segment the reinforcing particles in low-resolution images of the machining region, a reinforcing particle segmentation network (RPSNet) is proposed, incorporating a multimodal fusion and space-to-depth convolution module. Subsequently, position signals along the cutting direction are obtained by using a sliding window method. The effectiveness of each module and the performance of the model are analyzed and verified through comparative and ablation experiments. The results demonstrated that the proposed RPSNet achieved a mean average precision (mAP) of 95.4 % in segmenting reinforcing particles, with an inference time of 5.8 ms. In comparison to other methods, it demonstrated better real-time performance and accuracy. Additionally, the proposed method can convert image information into position signals, thus enabling real-time control of the laser for softening and modifying the reinforcing particles.</div></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"169 \",\"pages\":\"Article 104305\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361525000703\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525000703","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Toward laser-assisted cutting: A real-time segmentation method for reinforcing particles in particle-reinforced metal matrix composites
Particle-reinforced metal matrix composites (PRMMCs) are widely used because of their exceptional material properties. Online control of the laser field to soften and modify the reinforcing particles on the machined surface of the composites is an effective way to improve the machinability and machining quality of PRMMCs. A real-time segmentation method for reinforcing particles in PRMMCs is proposed. First, real-time acquisition of reinforcing particle images along the processing path is achieved using machine vision, and cutting region images are determined. Next, to improve the model’s ability to effectively segment the reinforcing particles in low-resolution images of the machining region, a reinforcing particle segmentation network (RPSNet) is proposed, incorporating a multimodal fusion and space-to-depth convolution module. Subsequently, position signals along the cutting direction are obtained by using a sliding window method. The effectiveness of each module and the performance of the model are analyzed and verified through comparative and ablation experiments. The results demonstrated that the proposed RPSNet achieved a mean average precision (mAP) of 95.4 % in segmenting reinforcing particles, with an inference time of 5.8 ms. In comparison to other methods, it demonstrated better real-time performance and accuracy. Additionally, the proposed method can convert image information into position signals, thus enabling real-time control of the laser for softening and modifying the reinforcing particles.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.