优化问题的直线搜索方法综述

Q3 Mathematics
Audu Umar Omesa , Sulaiman Mohammed Ibrahim , Rabiu Bashir Yunus , Issam A.R. Moghrabi , Muhammad Y. Waziri , Aceng Sambas
{"title":"优化问题的直线搜索方法综述","authors":"Audu Umar Omesa ,&nbsp;Sulaiman Mohammed Ibrahim ,&nbsp;Rabiu Bashir Yunus ,&nbsp;Issam A.R. Moghrabi ,&nbsp;Muhammad Y. Waziri ,&nbsp;Aceng Sambas","doi":"10.1016/j.rico.2025.100550","DOIUrl":null,"url":null,"abstract":"<div><div>The line search methods for optimization problems have garnered widespread adoption across various domains and applications, primarily due to their effectiveness in addressing intricate problems. An important component that ensures the success of various iterative algorithms is the search direction (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>) while the step-size (<span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>) ensures global convergence in different schemes. While the literature offers general guidelines for line search selection, few studies investigate how specific problem constraints impact the performance of optimization methods. This paper presents a comprehensive survey and classification of line search methods, focusing on their computational efficiency and performance under varied problem constraints. We examine the influence of different line search parameters across standard test functions through extensive numerical tests. Our findings suggest practical guidelines for selecting suitable line search methods based on problem characteristics, offering researchers insights into method suitability, and contributing to the significant practical application of optimization in diverse fields.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"19 ","pages":"Article 100550"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A brief survey of line search methods for optimization problems\",\"authors\":\"Audu Umar Omesa ,&nbsp;Sulaiman Mohammed Ibrahim ,&nbsp;Rabiu Bashir Yunus ,&nbsp;Issam A.R. Moghrabi ,&nbsp;Muhammad Y. Waziri ,&nbsp;Aceng Sambas\",\"doi\":\"10.1016/j.rico.2025.100550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The line search methods for optimization problems have garnered widespread adoption across various domains and applications, primarily due to their effectiveness in addressing intricate problems. An important component that ensures the success of various iterative algorithms is the search direction (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>) while the step-size (<span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>) ensures global convergence in different schemes. While the literature offers general guidelines for line search selection, few studies investigate how specific problem constraints impact the performance of optimization methods. This paper presents a comprehensive survey and classification of line search methods, focusing on their computational efficiency and performance under varied problem constraints. We examine the influence of different line search parameters across standard test functions through extensive numerical tests. Our findings suggest practical guidelines for selecting suitable line search methods based on problem characteristics, offering researchers insights into method suitability, and contributing to the significant practical application of optimization in diverse fields.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"19 \",\"pages\":\"Article 100550\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720725000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

优化问题的线搜索方法在各个领域和应用程序中得到了广泛的采用,主要是因为它们在解决复杂问题方面的有效性。确保各种迭代算法成功的一个重要组成部分是搜索方向(dk),而步长(αk)确保了不同方案的全局收敛。虽然文献为线搜索选择提供了一般指导,但很少有研究调查特定问题约束如何影响优化方法的性能。本文对线搜索方法进行了全面的调查和分类,重点研究了它们在不同问题约束下的计算效率和性能。我们通过广泛的数值试验研究了不同线搜索参数对标准测试函数的影响。我们的研究结果为基于问题特征选择合适的线搜索方法提供了实用的指导方针,为研究人员提供了方法适用性的见解,并为优化在不同领域的重大实际应用做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A brief survey of line search methods for optimization problems
The line search methods for optimization problems have garnered widespread adoption across various domains and applications, primarily due to their effectiveness in addressing intricate problems. An important component that ensures the success of various iterative algorithms is the search direction (dk) while the step-size (αk) ensures global convergence in different schemes. While the literature offers general guidelines for line search selection, few studies investigate how specific problem constraints impact the performance of optimization methods. This paper presents a comprehensive survey and classification of line search methods, focusing on their computational efficiency and performance under varied problem constraints. We examine the influence of different line search parameters across standard test functions through extensive numerical tests. Our findings suggest practical guidelines for selecting suitable line search methods based on problem characteristics, offering researchers insights into method suitability, and contributing to the significant practical application of optimization in diverse fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信