基于列行生成的继电器按需配送系统精确算法

IF 5.8 1区 工程技术 Q1 ECONOMICS
Xueting He, Lu Zhen
{"title":"基于列行生成的继电器按需配送系统精确算法","authors":"Xueting He,&nbsp;Lu Zhen","doi":"10.1016/j.trb.2025.103223","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies an operation optimization problem in a relay-based on-demand delivery system that uses couriers and drones to transport customers’ parcels. For a batch of customer orders with their delivery due times, the system must decide which orders to accept and which courier to dispatch to pick up each accepted order and transport it to a suitable station, from where a drone will transport it to another station and then another courier will transport it to its final destination. Using mixed-integer linear programing, this paper formulates a novel arc-based set-packing model with two types of columns, i.e., drone plans and courier plans, to maximize the profit from transporting a batch of orders. By combining branch-and-price, column-and-row generation, and some tailored acceleration tactics, an exact algorithm is designed and implemented to efficiently solve the model. Experimental results validate the efficiency of the proposed exact algorithm. Moreover, we find that large numbers of couriers, drones, or stations do not always substantially improve the system’s performance; if order due times are urgent, the benefit of drones (couriers) is more (less) significant. The model’s robustness and the applicability of our methodology in large-scale applications are validated.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"196 ","pages":"Article 103223"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Column-and-row generation based exact algorithm for relay-based on-demand delivery systems\",\"authors\":\"Xueting He,&nbsp;Lu Zhen\",\"doi\":\"10.1016/j.trb.2025.103223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies an operation optimization problem in a relay-based on-demand delivery system that uses couriers and drones to transport customers’ parcels. For a batch of customer orders with their delivery due times, the system must decide which orders to accept and which courier to dispatch to pick up each accepted order and transport it to a suitable station, from where a drone will transport it to another station and then another courier will transport it to its final destination. Using mixed-integer linear programing, this paper formulates a novel arc-based set-packing model with two types of columns, i.e., drone plans and courier plans, to maximize the profit from transporting a batch of orders. By combining branch-and-price, column-and-row generation, and some tailored acceleration tactics, an exact algorithm is designed and implemented to efficiently solve the model. Experimental results validate the efficiency of the proposed exact algorithm. Moreover, we find that large numbers of couriers, drones, or stations do not always substantially improve the system’s performance; if order due times are urgent, the benefit of drones (couriers) is more (less) significant. The model’s robustness and the applicability of our methodology in large-scale applications are validated.</div></div>\",\"PeriodicalId\":54418,\"journal\":{\"name\":\"Transportation Research Part B-Methodological\",\"volume\":\"196 \",\"pages\":\"Article 103223\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part B-Methodological\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191261525000724\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261525000724","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个基于中继的按需配送系统中的操作优化问题,该系统使用快递员和无人机来运送客户的包裹。对于一批有交货期的客户订单,系统必须决定接受哪些订单,以及派遣哪些快递员来接收每个接受的订单并将其运送到合适的站点,然后由无人机将其运送到另一个站点,再由另一个快递员将其运送到最终目的地。本文利用混合整数线性规划,制定了一种新颖的基于弧的集合包装模型,其中包含两种列,即无人机计划和快递员计划,以最大化运输一批订单的利润。通过结合分支与价格、列与行生成以及一些量身定制的加速策略,本文设计并实现了一种精确算法来高效求解该模型。实验结果验证了所提精确算法的效率。此外,我们还发现,大量的快递员、无人机或站点并不总是能大幅提高系统性能;如果订单到期时间紧迫,无人机(快递员)的优势会更明显(不那么明显)。模型的稳健性和我们的方法在大规模应用中的适用性得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Column-and-row generation based exact algorithm for relay-based on-demand delivery systems
This paper studies an operation optimization problem in a relay-based on-demand delivery system that uses couriers and drones to transport customers’ parcels. For a batch of customer orders with their delivery due times, the system must decide which orders to accept and which courier to dispatch to pick up each accepted order and transport it to a suitable station, from where a drone will transport it to another station and then another courier will transport it to its final destination. Using mixed-integer linear programing, this paper formulates a novel arc-based set-packing model with two types of columns, i.e., drone plans and courier plans, to maximize the profit from transporting a batch of orders. By combining branch-and-price, column-and-row generation, and some tailored acceleration tactics, an exact algorithm is designed and implemented to efficiently solve the model. Experimental results validate the efficiency of the proposed exact algorithm. Moreover, we find that large numbers of couriers, drones, or stations do not always substantially improve the system’s performance; if order due times are urgent, the benefit of drones (couriers) is more (less) significant. The model’s robustness and the applicability of our methodology in large-scale applications are validated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Research Part B-Methodological
Transportation Research Part B-Methodological 工程技术-工程:土木
CiteScore
12.40
自引率
8.80%
发文量
143
审稿时长
14.1 weeks
期刊介绍: Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信