基于位置编码生成器的医学图像分割硬网结构:基于LSA的编码器

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chia-Jui Chen
{"title":"基于位置编码生成器的医学图像分割硬网结构:基于LSA的编码器","authors":"Chia-Jui Chen","doi":"10.1016/j.jvcir.2025.104452","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers have focused on the rising usage of convolutional neural networks (CNNs) in segmentation, emphasizing the pivotal role of encoders in learning global and local information essential for predictions. The limited ability of CNNs to capture distant spatial relationships due to their local structure has spurred interest in the swin-transformer. Introducing a novel approach named Hard-UNet, blending CNNs and transformers, addresses this gap, inspired by transformer successes in NLP. Hard-UNet leverages HardNet for deep feature extraction and implements a transformer-based module for self-communication within sub-windows. Experimental results demonstrate its significant performance leap over existing methods, notably enhancing segmentation accuracy on medical image datasets like ISIC 2018 and BUSI. Outperforming UNext and ResUNet, Hard-UNet delivers a remarkable 16.24% enhancement in segmentation accuracy, achieving state-of-the-art results of 83.19 % and 83.26 % on the ISIC dataset.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"110 ","pages":"Article 104452"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hard-UNet architecture for medical image segmentation using position encoding generator: LSA based encoder\",\"authors\":\"Chia-Jui Chen\",\"doi\":\"10.1016/j.jvcir.2025.104452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Researchers have focused on the rising usage of convolutional neural networks (CNNs) in segmentation, emphasizing the pivotal role of encoders in learning global and local information essential for predictions. The limited ability of CNNs to capture distant spatial relationships due to their local structure has spurred interest in the swin-transformer. Introducing a novel approach named Hard-UNet, blending CNNs and transformers, addresses this gap, inspired by transformer successes in NLP. Hard-UNet leverages HardNet for deep feature extraction and implements a transformer-based module for self-communication within sub-windows. Experimental results demonstrate its significant performance leap over existing methods, notably enhancing segmentation accuracy on medical image datasets like ISIC 2018 and BUSI. Outperforming UNext and ResUNet, Hard-UNet delivers a remarkable 16.24% enhancement in segmentation accuracy, achieving state-of-the-art results of 83.19 % and 83.26 % on the ISIC dataset.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"110 \",\"pages\":\"Article 104452\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320325000665\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000665","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究人员关注卷积神经网络(cnn)在分割中的应用,强调编码器在学习预测所需的全局和局部信息方面的关键作用。由于局部结构的限制,cnn捕捉远距离空间关系的能力有限,这激发了人们对摆动变压器的兴趣。引入一种名为Hard-UNet的新方法,混合cnn和变压器,解决了这一差距,灵感来自于NLP中变压器的成功。Hard-UNet利用HardNet进行深度特征提取,并在子窗口内实现基于变压器的自通信模块。实验结果表明,该方法在ISIC 2018和BUSI等医学图像数据集上的分割精度显著提高,性能优于现有方法。Hard-UNet的分割精度比UNext和ResUNet提高了16.24%,在ISIC数据集上分别达到了83.19%和83.26%的最高水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hard-UNet architecture for medical image segmentation using position encoding generator: LSA based encoder
Researchers have focused on the rising usage of convolutional neural networks (CNNs) in segmentation, emphasizing the pivotal role of encoders in learning global and local information essential for predictions. The limited ability of CNNs to capture distant spatial relationships due to their local structure has spurred interest in the swin-transformer. Introducing a novel approach named Hard-UNet, blending CNNs and transformers, addresses this gap, inspired by transformer successes in NLP. Hard-UNet leverages HardNet for deep feature extraction and implements a transformer-based module for self-communication within sub-windows. Experimental results demonstrate its significant performance leap over existing methods, notably enhancing segmentation accuracy on medical image datasets like ISIC 2018 and BUSI. Outperforming UNext and ResUNet, Hard-UNet delivers a remarkable 16.24% enhancement in segmentation accuracy, achieving state-of-the-art results of 83.19 % and 83.26 % on the ISIC dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信