一种基于gan的反取证方法,通过修改JPEG头文件中的量化表

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hao Wang , Xin Cheng , Hao Wu , Xiangyang Luo , Bin Ma , Hui Zong , Jiawei Zhang , Jinwei Wang
{"title":"一种基于gan的反取证方法,通过修改JPEG头文件中的量化表","authors":"Hao Wang ,&nbsp;Xin Cheng ,&nbsp;Hao Wu ,&nbsp;Xiangyang Luo ,&nbsp;Bin Ma ,&nbsp;Hui Zong ,&nbsp;Jiawei Zhang ,&nbsp;Jinwei Wang","doi":"10.1016/j.jvcir.2025.104462","DOIUrl":null,"url":null,"abstract":"<div><div>It is crucial to detect double JPEG compression images in digital image forensics. When detecting recompressed images, most detection methods assume that the quantization table in the JPEG header is safe. The method fails once the quantization table in the header file is tampered with. Inspired by this phenomenon, this paper proposes a double JPEG compression anti-detection method based on the generative adversarial network (GAN) by modifying the quantization table of JPEG header files. The proposed method draws on the structure of GAN to modify the quantization table by gradient descent. Also, our proposed method introduces adversarial loss to determine the direction of the modification so that the modified quantization table can be used for cheat detection methods. The proposed method achieves the aim of anti-detection and only needs to replace the original quantization table after the net training. Experiments show that the proposed method has a high anti-detection rate and generates images with high visual quality.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"110 ","pages":"Article 104462"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GAN-based anti-forensics method by modifying the quantization table in JPEG header file\",\"authors\":\"Hao Wang ,&nbsp;Xin Cheng ,&nbsp;Hao Wu ,&nbsp;Xiangyang Luo ,&nbsp;Bin Ma ,&nbsp;Hui Zong ,&nbsp;Jiawei Zhang ,&nbsp;Jinwei Wang\",\"doi\":\"10.1016/j.jvcir.2025.104462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is crucial to detect double JPEG compression images in digital image forensics. When detecting recompressed images, most detection methods assume that the quantization table in the JPEG header is safe. The method fails once the quantization table in the header file is tampered with. Inspired by this phenomenon, this paper proposes a double JPEG compression anti-detection method based on the generative adversarial network (GAN) by modifying the quantization table of JPEG header files. The proposed method draws on the structure of GAN to modify the quantization table by gradient descent. Also, our proposed method introduces adversarial loss to determine the direction of the modification so that the modified quantization table can be used for cheat detection methods. The proposed method achieves the aim of anti-detection and only needs to replace the original quantization table after the net training. Experiments show that the proposed method has a high anti-detection rate and generates images with high visual quality.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"110 \",\"pages\":\"Article 104462\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320325000768\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000768","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在数字图像取证中,双JPEG压缩图像的检测至关重要。在检测再压缩图像时,大多数检测方法都假定JPEG报头中的量化表是安全的。一旦头文件中的量化表被篡改,该方法就会失败。受此启发,本文通过修改JPEG头文件的量化表,提出了一种基于生成式对抗网络(GAN)的双JPEG压缩反检测方法。该方法利用GAN的结构,采用梯度下降法对量化表进行修正。此外,我们提出的方法引入对抗损失来确定修改的方向,以便修改的量化表可以用于欺骗检测方法。该方法达到了防检测的目的,只需要在网络训练后替换原来的量化表即可。实验表明,该方法具有较高的抗检测率,生成的图像具有较高的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GAN-based anti-forensics method by modifying the quantization table in JPEG header file
It is crucial to detect double JPEG compression images in digital image forensics. When detecting recompressed images, most detection methods assume that the quantization table in the JPEG header is safe. The method fails once the quantization table in the header file is tampered with. Inspired by this phenomenon, this paper proposes a double JPEG compression anti-detection method based on the generative adversarial network (GAN) by modifying the quantization table of JPEG header files. The proposed method draws on the structure of GAN to modify the quantization table by gradient descent. Also, our proposed method introduces adversarial loss to determine the direction of the modification so that the modified quantization table can be used for cheat detection methods. The proposed method achieves the aim of anti-detection and only needs to replace the original quantization table after the net training. Experiments show that the proposed method has a high anti-detection rate and generates images with high visual quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信