碳和氢同位素在天然气起源研究中的应用

Yunyan Ni , Jinchuan Zhang , Limiao Yao , Guoliang Dong , Yuan Wang , Li Wang , Jianping Chen
{"title":"碳和氢同位素在天然气起源研究中的应用","authors":"Yunyan Ni ,&nbsp;Jinchuan Zhang ,&nbsp;Limiao Yao ,&nbsp;Guoliang Dong ,&nbsp;Yuan Wang ,&nbsp;Li Wang ,&nbsp;Jianping Chen","doi":"10.1016/j.jnggs.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Different types of natural gas exhibit distinct carbon and hydrogen isotopic compositions, making these isotopic compositions crucial indicators for identifying gas origins. With ongoing advancements in natural gas exploration technology and the increasing volume of exploration data, our understanding of natural gas origins and sources continues to deepen, and how to update and verify the existing data to ensure the applicability of gas genetic diagrams has become crucial. This study comprehensively analyzes the stable carbon and hydrogen isotope characteristics of different genetic types of natural gases in Sichuan, Tarim, Ordos, Turpan-Hami, Songliao, Northern Jiangsu, Sanshui, Qaidam, and Bohai Bay basins in China, together with abiotic gases from the Lost City of the Middle Atlantic Ridge, and the genetic diagrams related to commonly used carbon and hydrogen isotopes are evaluated. The study yields the following four conclusions: (1) The carbon isotopic values of methane (δ<sup>13</sup>C<sub>1</sub>), ethane (δ<sup>13</sup>C<sub>2</sub>), propane (δ<sup>13</sup>C<sub>3</sub>) and butane (δ<sup>13</sup>C<sub>4</sub>) of natural gases from China are from −89.4‰ to −11.4‰ (average of −36.6‰), −66.0‰ to −17.5‰ (average of −29.4‰), −49.5‰ to −13.2‰ (average of −27.3‰), −38.5‰ to −16.0‰ (average of −25.6‰), respectively. (2) The hydrogen isotopic values of methane (δD<sub>1</sub>), ethane (δD<sub>2</sub>) and propane (δD<sub>3</sub>) of natural gases from China range from −287‰ to −111‰ (average of −177‰), −249‰ to −94‰ (average of −158‰), and −237‰ to −75‰ (average of −146‰), respectively. (3) The carbon and hydrogen isotopic distribution patterns among methane and its homologues of natural gases in China are mainly in positive order (δ<sup>13</sup>C<sub>1</sub>&lt;δ<sup>13</sup>C<sub>2</sub>&lt;δ<sup>13</sup>C<sub>3</sub>&lt;δ<sup>13</sup>C<sub>4</sub>, δD<sub>1</sub>&lt;δD<sub>2</sub>&lt;δD<sub>3</sub>). In most natural gas samples, the fractionation amplitude between methane and ethane is greater than that between ethane and propane (Δ(δ<sup>13</sup>C<sub>2</sub>−δ<sup>13</sup>C<sub>1</sub>) &gt; Δ(δ<sup>13</sup>C<sub>3</sub>−δ<sup>13</sup>C<sub>2</sub>), Δ(δD<sub>2</sub>−δD<sub>1</sub>) &gt; Δ(δD<sub>3</sub>−δD<sub>2</sub>)). (4) The δ<sup>13</sup>C<sub>1</sub>–δ<sup>13</sup>C<sub>2</sub>–δ<sup>13</sup>C<sub>3</sub>, the δ<sup>13</sup>C<sub>1</sub>–δD<sub>1</sub>, δ<sup>13</sup>C<sub>1</sub>–C<sub>1</sub>/C<sub>2+3</sub>, Δ(δ<sup>13</sup>C<sub>2</sub>−δ<sup>13</sup>C<sub>1</sub>)–Δ(δ<sup>13</sup>C<sub>3</sub>−δ<sup>13</sup>C<sub>2</sub>) and Δ(δD<sub>2</sub>−δD<sub>1</sub>)–Δ(δD<sub>3</sub>−δD<sub>2</sub>) diagrams, can be used to identify the gas origin in many different cases, and the combined application between different charts can enhance the identification effect.</div></div>","PeriodicalId":100808,"journal":{"name":"Journal of Natural Gas Geoscience","volume":"10 2","pages":"Pages 75-85"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of carbon and hydrogen isotopes in the study of natural gas origins\",\"authors\":\"Yunyan Ni ,&nbsp;Jinchuan Zhang ,&nbsp;Limiao Yao ,&nbsp;Guoliang Dong ,&nbsp;Yuan Wang ,&nbsp;Li Wang ,&nbsp;Jianping Chen\",\"doi\":\"10.1016/j.jnggs.2025.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Different types of natural gas exhibit distinct carbon and hydrogen isotopic compositions, making these isotopic compositions crucial indicators for identifying gas origins. With ongoing advancements in natural gas exploration technology and the increasing volume of exploration data, our understanding of natural gas origins and sources continues to deepen, and how to update and verify the existing data to ensure the applicability of gas genetic diagrams has become crucial. This study comprehensively analyzes the stable carbon and hydrogen isotope characteristics of different genetic types of natural gases in Sichuan, Tarim, Ordos, Turpan-Hami, Songliao, Northern Jiangsu, Sanshui, Qaidam, and Bohai Bay basins in China, together with abiotic gases from the Lost City of the Middle Atlantic Ridge, and the genetic diagrams related to commonly used carbon and hydrogen isotopes are evaluated. The study yields the following four conclusions: (1) The carbon isotopic values of methane (δ<sup>13</sup>C<sub>1</sub>), ethane (δ<sup>13</sup>C<sub>2</sub>), propane (δ<sup>13</sup>C<sub>3</sub>) and butane (δ<sup>13</sup>C<sub>4</sub>) of natural gases from China are from −89.4‰ to −11.4‰ (average of −36.6‰), −66.0‰ to −17.5‰ (average of −29.4‰), −49.5‰ to −13.2‰ (average of −27.3‰), −38.5‰ to −16.0‰ (average of −25.6‰), respectively. (2) The hydrogen isotopic values of methane (δD<sub>1</sub>), ethane (δD<sub>2</sub>) and propane (δD<sub>3</sub>) of natural gases from China range from −287‰ to −111‰ (average of −177‰), −249‰ to −94‰ (average of −158‰), and −237‰ to −75‰ (average of −146‰), respectively. (3) The carbon and hydrogen isotopic distribution patterns among methane and its homologues of natural gases in China are mainly in positive order (δ<sup>13</sup>C<sub>1</sub>&lt;δ<sup>13</sup>C<sub>2</sub>&lt;δ<sup>13</sup>C<sub>3</sub>&lt;δ<sup>13</sup>C<sub>4</sub>, δD<sub>1</sub>&lt;δD<sub>2</sub>&lt;δD<sub>3</sub>). In most natural gas samples, the fractionation amplitude between methane and ethane is greater than that between ethane and propane (Δ(δ<sup>13</sup>C<sub>2</sub>−δ<sup>13</sup>C<sub>1</sub>) &gt; Δ(δ<sup>13</sup>C<sub>3</sub>−δ<sup>13</sup>C<sub>2</sub>), Δ(δD<sub>2</sub>−δD<sub>1</sub>) &gt; Δ(δD<sub>3</sub>−δD<sub>2</sub>)). (4) The δ<sup>13</sup>C<sub>1</sub>–δ<sup>13</sup>C<sub>2</sub>–δ<sup>13</sup>C<sub>3</sub>, the δ<sup>13</sup>C<sub>1</sub>–δD<sub>1</sub>, δ<sup>13</sup>C<sub>1</sub>–C<sub>1</sub>/C<sub>2+3</sub>, Δ(δ<sup>13</sup>C<sub>2</sub>−δ<sup>13</sup>C<sub>1</sub>)–Δ(δ<sup>13</sup>C<sub>3</sub>−δ<sup>13</sup>C<sub>2</sub>) and Δ(δD<sub>2</sub>−δD<sub>1</sub>)–Δ(δD<sub>3</sub>−δD<sub>2</sub>) diagrams, can be used to identify the gas origin in many different cases, and the combined application between different charts can enhance the identification effect.</div></div>\",\"PeriodicalId\":100808,\"journal\":{\"name\":\"Journal of Natural Gas Geoscience\",\"volume\":\"10 2\",\"pages\":\"Pages 75-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Geoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468256X25000124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468256X25000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同类型的天然气表现出不同的碳、氢同位素组成,这些同位素组成是识别天然气成因的重要指标。随着天然气勘探技术的不断进步和勘探数据量的不断增加,我们对天然气成因和气源的认识不断加深,如何更新和验证现有数据以确保天然气成因图的适用性变得至关重要。综合分析了中国四川、塔里木、鄂尔多斯、吐哈、松辽、苏北、三水、柴达木、渤海湾等盆地及大西洋中脊失落之城非生物气不同成因类型天然气的稳定碳、氢同位素特征,并评价了常用的碳、氢同位素成因图。结果表明:(1)中国天然气甲烷(δ13C1)、乙烷(δ13C2)、丙烷(δ13C3)、丁烷(δ13C4)碳同位素值分别为- 89.4‰~ - 11.4‰(平均- 36.6‰)、- 66.0‰~ - 17.5‰(平均- 29.4‰)、- 49.5‰~ - 13.2‰(平均- 27.3‰)、- 38.5‰~ - 16.0‰(平均- 25.6‰)。(2)中国天然气甲烷(δD1)、乙烷(δD2)和丙烷(δD3)氢同位素值分别为- 287‰~ - 111‰(平均- 177‰)、- 249‰~ - 94‰(平均- 158‰)和- 237‰~ - 75‰(平均- 146‰)。(3)中国天然气甲烷及其同质物的碳、氢同位素分布模式主要为正序分布(δ13C1<δ13C2<δ13C3<δ13C4、δD1<δD2<δD3)。在大多数天然气样品中,甲烷与乙烷之间的分馏振幅大于乙烷与丙烷之间的分馏振幅(Δ(Δ 13c2−Δ 13c1) >;Δ(Δ 13c3−Δ 13c2), Δ(Δ d2−Δ d1) >;Δ(δD3−δD2))。(4) Δ 13c1 -Δ 13c2 -Δ 13c3图、Δ 13c1 -Δ d1图、Δ 13c1 - c1 /C2+3图、Δ(Δ 13c2 -Δ 13c1) -Δ (Δ 13c3 -Δ 13c2)图和Δ(Δ d2 -Δ d1) -Δ (Δ d3 -Δ d2)图可用于多种不同情况下的天然气成因识别,不同图之间的联合应用可提高识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of carbon and hydrogen isotopes in the study of natural gas origins
Different types of natural gas exhibit distinct carbon and hydrogen isotopic compositions, making these isotopic compositions crucial indicators for identifying gas origins. With ongoing advancements in natural gas exploration technology and the increasing volume of exploration data, our understanding of natural gas origins and sources continues to deepen, and how to update and verify the existing data to ensure the applicability of gas genetic diagrams has become crucial. This study comprehensively analyzes the stable carbon and hydrogen isotope characteristics of different genetic types of natural gases in Sichuan, Tarim, Ordos, Turpan-Hami, Songliao, Northern Jiangsu, Sanshui, Qaidam, and Bohai Bay basins in China, together with abiotic gases from the Lost City of the Middle Atlantic Ridge, and the genetic diagrams related to commonly used carbon and hydrogen isotopes are evaluated. The study yields the following four conclusions: (1) The carbon isotopic values of methane (δ13C1), ethane (δ13C2), propane (δ13C3) and butane (δ13C4) of natural gases from China are from −89.4‰ to −11.4‰ (average of −36.6‰), −66.0‰ to −17.5‰ (average of −29.4‰), −49.5‰ to −13.2‰ (average of −27.3‰), −38.5‰ to −16.0‰ (average of −25.6‰), respectively. (2) The hydrogen isotopic values of methane (δD1), ethane (δD2) and propane (δD3) of natural gases from China range from −287‰ to −111‰ (average of −177‰), −249‰ to −94‰ (average of −158‰), and −237‰ to −75‰ (average of −146‰), respectively. (3) The carbon and hydrogen isotopic distribution patterns among methane and its homologues of natural gases in China are mainly in positive order (δ13C113C213C313C4, δD1<δD2<δD3). In most natural gas samples, the fractionation amplitude between methane and ethane is greater than that between ethane and propane (Δ(δ13C2−δ13C1) > Δ(δ13C3−δ13C2), Δ(δD2−δD1) > Δ(δD3−δD2)). (4) The δ13C1–δ13C2–δ13C3, the δ13C1–δD1, δ13C1–C1/C2+3, Δ(δ13C2−δ13C1)–Δ(δ13C3−δ13C2) and Δ(δD2−δD1)–Δ(δD3−δD2) diagrams, can be used to identify the gas origin in many different cases, and the combined application between different charts can enhance the identification effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信