{"title":"非对称槽型超疏水通道粘塑性流体动力学控制","authors":"A. Joulaei , H. Rahmani , S.M. Taghavi","doi":"10.1016/j.jnnfm.2025.105420","DOIUrl":null,"url":null,"abstract":"<div><div>We study the plane Poiseuille flow of viscoplastic fluids in channels with asymmetric superhydrophobic (SH) walls featuring transverse groove configurations in the thin channel limit. We use OpenFOAM simulations and the Papanastasiou regularization method to approximate the Bingham model. Focusing on variations in the upper SH wall’s characteristics, we explore the effects of slip number (<span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), groove periodicity length (<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), slip area fraction (<span><math><msub><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), and Bingham number (<span><math><mi>B</mi></math></span>) on flow dynamics, flow metrics and unyielded center plug morphology. We find that increasing <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> enhances slip velocity on the upper SH wall and reduces the normalized plug area (<span><math><mrow><mi>A</mi><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>) up to <span><math><mrow><msub><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>, while higher <span><math><mi>B</mi></math></span> amplifies flow asymmetry, shifting and breaking center plugs. By introducing the concept of <em>slippery equivalent systems</em>, we demonstrate that varying groove configurations can yield identical effective slip lengths (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>) with distinct plug morphologies, enabling precise control of viscoplastic fluid dynamics. We derive a simplified model to predict <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> and <span><math><mrow><mi>A</mi><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, identifying a critical threshold at <span><math><mrow><mi>A</mi><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>68</mn></mrow></math></span> for regime transitions between unbroken (Regime I) and broken (Regime II) center plugs, leading to a six-dimensional manifold equation for classifying these regimes across parameter space.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"341 ","pages":"Article 105420"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of viscoplastic fluid dynamics in superhydrophobic channels with asymmetric groove configurations\",\"authors\":\"A. Joulaei , H. Rahmani , S.M. Taghavi\",\"doi\":\"10.1016/j.jnnfm.2025.105420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the plane Poiseuille flow of viscoplastic fluids in channels with asymmetric superhydrophobic (SH) walls featuring transverse groove configurations in the thin channel limit. We use OpenFOAM simulations and the Papanastasiou regularization method to approximate the Bingham model. Focusing on variations in the upper SH wall’s characteristics, we explore the effects of slip number (<span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), groove periodicity length (<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), slip area fraction (<span><math><msub><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), and Bingham number (<span><math><mi>B</mi></math></span>) on flow dynamics, flow metrics and unyielded center plug morphology. We find that increasing <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> enhances slip velocity on the upper SH wall and reduces the normalized plug area (<span><math><mrow><mi>A</mi><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>) up to <span><math><mrow><msub><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>, while higher <span><math><mi>B</mi></math></span> amplifies flow asymmetry, shifting and breaking center plugs. By introducing the concept of <em>slippery equivalent systems</em>, we demonstrate that varying groove configurations can yield identical effective slip lengths (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>) with distinct plug morphologies, enabling precise control of viscoplastic fluid dynamics. We derive a simplified model to predict <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> and <span><math><mrow><mi>A</mi><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, identifying a critical threshold at <span><math><mrow><mi>A</mi><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>68</mn></mrow></math></span> for regime transitions between unbroken (Regime I) and broken (Regime II) center plugs, leading to a six-dimensional manifold equation for classifying these regimes across parameter space.</div></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"341 \",\"pages\":\"Article 105420\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377025725000394\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025725000394","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Control of viscoplastic fluid dynamics in superhydrophobic channels with asymmetric groove configurations
We study the plane Poiseuille flow of viscoplastic fluids in channels with asymmetric superhydrophobic (SH) walls featuring transverse groove configurations in the thin channel limit. We use OpenFOAM simulations and the Papanastasiou regularization method to approximate the Bingham model. Focusing on variations in the upper SH wall’s characteristics, we explore the effects of slip number (), groove periodicity length (), slip area fraction (), and Bingham number () on flow dynamics, flow metrics and unyielded center plug morphology. We find that increasing , , and enhances slip velocity on the upper SH wall and reduces the normalized plug area () up to , while higher amplifies flow asymmetry, shifting and breaking center plugs. By introducing the concept of slippery equivalent systems, we demonstrate that varying groove configurations can yield identical effective slip lengths () with distinct plug morphologies, enabling precise control of viscoplastic fluid dynamics. We derive a simplified model to predict and , identifying a critical threshold at for regime transitions between unbroken (Regime I) and broken (Regime II) center plugs, leading to a six-dimensional manifold equation for classifying these regimes across parameter space.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.