Ata Ur Rahman , Ghulam Hussain , Imad Khan , Abdus Samad , Zhengbiao Ouyang
{"title":"调谐窄带隙二维 WSn2X4(X=P,As)材料的电子和光学特性","authors":"Ata Ur Rahman , Ghulam Hussain , Imad Khan , Abdus Samad , Zhengbiao Ouyang","doi":"10.1016/j.commatsci.2025.113899","DOIUrl":null,"url":null,"abstract":"<div><div>Since the successful synthesis of MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (Hong et al., 2020), the ”MA<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Z<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> family” has emerged as highly promising class of materials for next-generation optoelectronic applications. In this study, we employ first-principles calculations to investigate the structural, electronic, and optical properties of two-dimensional WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (X = P, As) monolayers. The ground-state energies, elastic constants, and phonon calculations confirm that these materials satisfy the energetic, mechanical, and dynamical stability criteria, indicating their feasibility for experimental synthesis. <em>Ab initio</em> molecular dynamics simulations further indicate that the WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> monolayers can sustain stability at high temperature. Our results reveals that the WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> exhibits metallic behavior at the PBE level, while the HSE06 functional opens a bandgap of 0.12 eV. Similarly, the narrow bandgap of WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (0.05 eV at the PBE level) is enhanced to 0.32 eV with the HSE06 functional. Furthermore, the optical response of these narrow-bandgap monolayers demonstrates optical bandgaps in the infrared (IR) range, making them promising candidates for infrared detectors. We also investigate the impact of biaxial strain on the electronic and optical properties of WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (X = P, As) monolayers. Our findings reveal significant changes in both their electronic structure and optical spectra under strain. The bandgap can be tuned, enabling a semiconductor-to-metal transition under biaxial strain. Additionally, the light absorption characteristics and the positions of the absorption peaks can be finely adjusted via biaxial strain, allowing for tailored optical properties in the infrared region. These results provide valuable insights into the intrinsic electronic and optical properties of these 2D materials and their modulation through biaxial strain, highlighting their potential for applications in terahertz devices, nanoelectronics, and optoelectronics.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"255 ","pages":"Article 113899"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning electronic and optical properties of narrow band gap 2D WSn2X4 (X=P, As) materials\",\"authors\":\"Ata Ur Rahman , Ghulam Hussain , Imad Khan , Abdus Samad , Zhengbiao Ouyang\",\"doi\":\"10.1016/j.commatsci.2025.113899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since the successful synthesis of MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (Hong et al., 2020), the ”MA<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Z<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> family” has emerged as highly promising class of materials for next-generation optoelectronic applications. In this study, we employ first-principles calculations to investigate the structural, electronic, and optical properties of two-dimensional WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (X = P, As) monolayers. The ground-state energies, elastic constants, and phonon calculations confirm that these materials satisfy the energetic, mechanical, and dynamical stability criteria, indicating their feasibility for experimental synthesis. <em>Ab initio</em> molecular dynamics simulations further indicate that the WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> monolayers can sustain stability at high temperature. Our results reveals that the WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> exhibits metallic behavior at the PBE level, while the HSE06 functional opens a bandgap of 0.12 eV. Similarly, the narrow bandgap of WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (0.05 eV at the PBE level) is enhanced to 0.32 eV with the HSE06 functional. Furthermore, the optical response of these narrow-bandgap monolayers demonstrates optical bandgaps in the infrared (IR) range, making them promising candidates for infrared detectors. We also investigate the impact of biaxial strain on the electronic and optical properties of WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (X = P, As) monolayers. Our findings reveal significant changes in both their electronic structure and optical spectra under strain. The bandgap can be tuned, enabling a semiconductor-to-metal transition under biaxial strain. Additionally, the light absorption characteristics and the positions of the absorption peaks can be finely adjusted via biaxial strain, allowing for tailored optical properties in the infrared region. These results provide valuable insights into the intrinsic electronic and optical properties of these 2D materials and their modulation through biaxial strain, highlighting their potential for applications in terahertz devices, nanoelectronics, and optoelectronics.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"255 \",\"pages\":\"Article 113899\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625002423\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002423","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tuning electronic and optical properties of narrow band gap 2D WSn2X4 (X=P, As) materials
Since the successful synthesis of MoSiN (Hong et al., 2020), the ”MAZ family” has emerged as highly promising class of materials for next-generation optoelectronic applications. In this study, we employ first-principles calculations to investigate the structural, electronic, and optical properties of two-dimensional WSnX (X = P, As) monolayers. The ground-state energies, elastic constants, and phonon calculations confirm that these materials satisfy the energetic, mechanical, and dynamical stability criteria, indicating their feasibility for experimental synthesis. Ab initio molecular dynamics simulations further indicate that the WSnX monolayers can sustain stability at high temperature. Our results reveals that the WSnP exhibits metallic behavior at the PBE level, while the HSE06 functional opens a bandgap of 0.12 eV. Similarly, the narrow bandgap of WSnAs (0.05 eV at the PBE level) is enhanced to 0.32 eV with the HSE06 functional. Furthermore, the optical response of these narrow-bandgap monolayers demonstrates optical bandgaps in the infrared (IR) range, making them promising candidates for infrared detectors. We also investigate the impact of biaxial strain on the electronic and optical properties of WSnX (X = P, As) monolayers. Our findings reveal significant changes in both their electronic structure and optical spectra under strain. The bandgap can be tuned, enabling a semiconductor-to-metal transition under biaxial strain. Additionally, the light absorption characteristics and the positions of the absorption peaks can be finely adjusted via biaxial strain, allowing for tailored optical properties in the infrared region. These results provide valuable insights into the intrinsic electronic and optical properties of these 2D materials and their modulation through biaxial strain, highlighting their potential for applications in terahertz devices, nanoelectronics, and optoelectronics.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.