调谐窄带隙二维 WSn2X4(X=P,As)材料的电子和光学特性

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ata Ur Rahman , Ghulam Hussain , Imad Khan , Abdus Samad , Zhengbiao Ouyang
{"title":"调谐窄带隙二维 WSn2X4(X=P,As)材料的电子和光学特性","authors":"Ata Ur Rahman ,&nbsp;Ghulam Hussain ,&nbsp;Imad Khan ,&nbsp;Abdus Samad ,&nbsp;Zhengbiao Ouyang","doi":"10.1016/j.commatsci.2025.113899","DOIUrl":null,"url":null,"abstract":"<div><div>Since the successful synthesis of MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (Hong et al., 2020), the ”MA<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Z<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> family” has emerged as highly promising class of materials for next-generation optoelectronic applications. In this study, we employ first-principles calculations to investigate the structural, electronic, and optical properties of two-dimensional WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (X = P, As) monolayers. The ground-state energies, elastic constants, and phonon calculations confirm that these materials satisfy the energetic, mechanical, and dynamical stability criteria, indicating their feasibility for experimental synthesis. <em>Ab initio</em> molecular dynamics simulations further indicate that the WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> monolayers can sustain stability at high temperature. Our results reveals that the WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> exhibits metallic behavior at the PBE level, while the HSE06 functional opens a bandgap of 0.12 eV. Similarly, the narrow bandgap of WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (0.05 eV at the PBE level) is enhanced to 0.32 eV with the HSE06 functional. Furthermore, the optical response of these narrow-bandgap monolayers demonstrates optical bandgaps in the infrared (IR) range, making them promising candidates for infrared detectors. We also investigate the impact of biaxial strain on the electronic and optical properties of WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (X = P, As) monolayers. Our findings reveal significant changes in both their electronic structure and optical spectra under strain. The bandgap can be tuned, enabling a semiconductor-to-metal transition under biaxial strain. Additionally, the light absorption characteristics and the positions of the absorption peaks can be finely adjusted via biaxial strain, allowing for tailored optical properties in the infrared region. These results provide valuable insights into the intrinsic electronic and optical properties of these 2D materials and their modulation through biaxial strain, highlighting their potential for applications in terahertz devices, nanoelectronics, and optoelectronics.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"255 ","pages":"Article 113899"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning electronic and optical properties of narrow band gap 2D WSn2X4 (X=P, As) materials\",\"authors\":\"Ata Ur Rahman ,&nbsp;Ghulam Hussain ,&nbsp;Imad Khan ,&nbsp;Abdus Samad ,&nbsp;Zhengbiao Ouyang\",\"doi\":\"10.1016/j.commatsci.2025.113899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since the successful synthesis of MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (Hong et al., 2020), the ”MA<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Z<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> family” has emerged as highly promising class of materials for next-generation optoelectronic applications. In this study, we employ first-principles calculations to investigate the structural, electronic, and optical properties of two-dimensional WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (X = P, As) monolayers. The ground-state energies, elastic constants, and phonon calculations confirm that these materials satisfy the energetic, mechanical, and dynamical stability criteria, indicating their feasibility for experimental synthesis. <em>Ab initio</em> molecular dynamics simulations further indicate that the WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> monolayers can sustain stability at high temperature. Our results reveals that the WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> exhibits metallic behavior at the PBE level, while the HSE06 functional opens a bandgap of 0.12 eV. Similarly, the narrow bandgap of WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (0.05 eV at the PBE level) is enhanced to 0.32 eV with the HSE06 functional. Furthermore, the optical response of these narrow-bandgap monolayers demonstrates optical bandgaps in the infrared (IR) range, making them promising candidates for infrared detectors. We also investigate the impact of biaxial strain on the electronic and optical properties of WSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> (X = P, As) monolayers. Our findings reveal significant changes in both their electronic structure and optical spectra under strain. The bandgap can be tuned, enabling a semiconductor-to-metal transition under biaxial strain. Additionally, the light absorption characteristics and the positions of the absorption peaks can be finely adjusted via biaxial strain, allowing for tailored optical properties in the infrared region. These results provide valuable insights into the intrinsic electronic and optical properties of these 2D materials and their modulation through biaxial strain, highlighting their potential for applications in terahertz devices, nanoelectronics, and optoelectronics.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"255 \",\"pages\":\"Article 113899\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625002423\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002423","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自MoSi2N4成功合成以来(Hong et al., 2020),“MA2Z4家族”已成为下一代光电应用中极具前景的材料。在这项研究中,我们采用第一性原理计算来研究二维WSn2X4 (X = P, As)单层的结构、电子和光学性质。基态能量、弹性常数和声子计算证实,这些材料满足能量、力学和动力学稳定性标准,表明它们在实验合成上是可行的。从头算分子动力学模拟进一步表明,WSn2X4单层膜在高温下保持稳定。我们的研究结果表明,WSn2P4在PBE水平上表现出金属行为,而HSE06功能打开了0.12 eV的带隙。同样,WSn2As4的窄带隙(PBE水平0.05 eV)随着HSE06功能的增强而增强到0.32 eV。此外,这些窄带隙单层的光学响应显示出红外(IR)范围内的光学带隙,使其成为红外探测器的有希望的候选者。我们还研究了双轴应变对WSn2X4 (X = P, As)单层材料电子和光学性能的影响。我们的发现揭示了它们的电子结构和光谱在应变下的显著变化。带隙可以调谐,在双轴应变下实现半导体到金属的转变。此外,光吸收特性和吸收峰的位置可以通过双轴应变进行精细调整,从而在红外区域实现定制的光学特性。这些结果为这些二维材料的内在电子和光学特性及其通过双轴应变的调制提供了有价值的见解,突出了它们在太赫兹器件,纳米电子学和光电子学中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning electronic and optical properties of narrow band gap 2D WSn2X4 (X=P, As) materials

Tuning electronic and optical properties of narrow band gap 2D WSn2X4 (X=P, As) materials
Since the successful synthesis of MoSi2N4 (Hong et al., 2020), the ”MA2Z4 family” has emerged as highly promising class of materials for next-generation optoelectronic applications. In this study, we employ first-principles calculations to investigate the structural, electronic, and optical properties of two-dimensional WSn2X4 (X = P, As) monolayers. The ground-state energies, elastic constants, and phonon calculations confirm that these materials satisfy the energetic, mechanical, and dynamical stability criteria, indicating their feasibility for experimental synthesis. Ab initio molecular dynamics simulations further indicate that the WSn2X4 monolayers can sustain stability at high temperature. Our results reveals that the WSn2P4 exhibits metallic behavior at the PBE level, while the HSE06 functional opens a bandgap of 0.12 eV. Similarly, the narrow bandgap of WSn2As4 (0.05 eV at the PBE level) is enhanced to 0.32 eV with the HSE06 functional. Furthermore, the optical response of these narrow-bandgap monolayers demonstrates optical bandgaps in the infrared (IR) range, making them promising candidates for infrared detectors. We also investigate the impact of biaxial strain on the electronic and optical properties of WSn2X4 (X = P, As) monolayers. Our findings reveal significant changes in both their electronic structure and optical spectra under strain. The bandgap can be tuned, enabling a semiconductor-to-metal transition under biaxial strain. Additionally, the light absorption characteristics and the positions of the absorption peaks can be finely adjusted via biaxial strain, allowing for tailored optical properties in the infrared region. These results provide valuable insights into the intrinsic electronic and optical properties of these 2D materials and their modulation through biaxial strain, highlighting their potential for applications in terahertz devices, nanoelectronics, and optoelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信