阐明Ec-1金属硫蛋白β e结构域的金属化途径:对ZnII结合和蛋白质折叠的见解

IF 3.8 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rukmal Karunaratne , Erik P. Willems , Oliver Zerbe , Eva Freisinger
{"title":"阐明Ec-1金属硫蛋白β e结构域的金属化途径:对ZnII结合和蛋白质折叠的见解","authors":"Rukmal Karunaratne ,&nbsp;Erik P. Willems ,&nbsp;Oliver Zerbe ,&nbsp;Eva Freisinger","doi":"10.1016/j.jinorgbio.2025.112931","DOIUrl":null,"url":null,"abstract":"<div><div>Metallothioneins (MTs) are small cysteine-rich proteins that preferentially bind d<sup>10</sup> metal ions such as Zn<sup>II</sup>, Cu<sup>I</sup>, and Cd<sup>II</sup>, playing essential roles in metal ion homeostasis and detoxification. The E<sub>c</sub>-1 metallothionein from <em>Triticum aestivum</em> (common bread wheat) was the first plant metallothionein for which a 3D structure was successfully determined, although this structure represents only the fully metalated state of the protein. In this study, we aim to elucidate the metalation pathway of the β<sub>E</sub>-domain of wheat E<sub>c</sub>-1. This domain features a mononuclear Zn<sup>II</sup> binding site composed of two cysteine and two highly conserved histidine residues, reminiscent of the Zn-finger motifs found in certain proteins. Moreover, the domain forms a trinuclear Zn<sub>3</sub>Cys<sub>9</sub> cluster, similar to the β-cluster motif observed, for example, in vertebrate MTs. To investigate the metalation pathway of the β<sub>E</sub>-domain, we combined nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and targeted cysteine modification techniques. Our results confidently identify the sequential binding site regions for each of the four Zn<sup>II</sup> ions and reveal intriguing, unexpected insights into the folding pathway of the peptide backbone.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"270 ","pages":"Article 112931"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the metalation pathway of the Ec-1 metallothionein βE-domain: Insights into ZnII binding and protein folding\",\"authors\":\"Rukmal Karunaratne ,&nbsp;Erik P. Willems ,&nbsp;Oliver Zerbe ,&nbsp;Eva Freisinger\",\"doi\":\"10.1016/j.jinorgbio.2025.112931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metallothioneins (MTs) are small cysteine-rich proteins that preferentially bind d<sup>10</sup> metal ions such as Zn<sup>II</sup>, Cu<sup>I</sup>, and Cd<sup>II</sup>, playing essential roles in metal ion homeostasis and detoxification. The E<sub>c</sub>-1 metallothionein from <em>Triticum aestivum</em> (common bread wheat) was the first plant metallothionein for which a 3D structure was successfully determined, although this structure represents only the fully metalated state of the protein. In this study, we aim to elucidate the metalation pathway of the β<sub>E</sub>-domain of wheat E<sub>c</sub>-1. This domain features a mononuclear Zn<sup>II</sup> binding site composed of two cysteine and two highly conserved histidine residues, reminiscent of the Zn-finger motifs found in certain proteins. Moreover, the domain forms a trinuclear Zn<sub>3</sub>Cys<sub>9</sub> cluster, similar to the β-cluster motif observed, for example, in vertebrate MTs. To investigate the metalation pathway of the β<sub>E</sub>-domain, we combined nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and targeted cysteine modification techniques. Our results confidently identify the sequential binding site regions for each of the four Zn<sup>II</sup> ions and reveal intriguing, unexpected insights into the folding pathway of the peptide backbone.</div></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"270 \",\"pages\":\"Article 112931\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013425001114\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425001114","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金属硫蛋白(MTs)是一类富含半胱氨酸的小分子蛋白,可优先结合ni、CuI、CdII等10种金属离子,在金属离子稳态和解毒中起重要作用。来自小麦(普通面包小麦)的Ec-1金属硫蛋白是第一个成功确定三维结构的植物金属硫蛋白,尽管这种结构仅代表蛋白质的完全金属化状态。在本研究中,我们旨在阐明小麦Ec-1 β e结构域的金属化途径。该结构域具有由两个半胱氨酸和两个高度保守的组氨酸残基组成的单核ni结合位点,使人联想到某些蛋白质中发现的锌指基。此外,该结构域形成一个三核Zn3Cys9簇,类似于在脊椎动物MTs中观察到的β-簇基元。为了研究β e结构域的金属化途径,我们结合了核磁共振(NMR)光谱、质谱和靶向半胱氨酸修饰技术。我们的研究结果自信地确定了四种ni离子的顺序结合位点区域,并揭示了肽主链折叠途径的有趣的、意想不到的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidating the metalation pathway of the Ec-1 metallothionein βE-domain: Insights into ZnII binding and protein folding

Elucidating the metalation pathway of the Ec-1 metallothionein βE-domain: Insights into ZnII binding and protein folding
Metallothioneins (MTs) are small cysteine-rich proteins that preferentially bind d10 metal ions such as ZnII, CuI, and CdII, playing essential roles in metal ion homeostasis and detoxification. The Ec-1 metallothionein from Triticum aestivum (common bread wheat) was the first plant metallothionein for which a 3D structure was successfully determined, although this structure represents only the fully metalated state of the protein. In this study, we aim to elucidate the metalation pathway of the βE-domain of wheat Ec-1. This domain features a mononuclear ZnII binding site composed of two cysteine and two highly conserved histidine residues, reminiscent of the Zn-finger motifs found in certain proteins. Moreover, the domain forms a trinuclear Zn3Cys9 cluster, similar to the β-cluster motif observed, for example, in vertebrate MTs. To investigate the metalation pathway of the βE-domain, we combined nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and targeted cysteine modification techniques. Our results confidently identify the sequential binding site regions for each of the four ZnII ions and reveal intriguing, unexpected insights into the folding pathway of the peptide backbone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inorganic Biochemistry
Journal of Inorganic Biochemistry 生物-生化与分子生物学
CiteScore
7.00
自引率
10.30%
发文量
336
审稿时长
41 days
期刊介绍: The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信