多部场景下量子记忆的熵不确定性关系收紧

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Cong Xu , Qing-Hua Zhang , Tao Li , Shao-Ming Fei
{"title":"多部场景下量子记忆的熵不确定性关系收紧","authors":"Cong Xu ,&nbsp;Qing-Hua Zhang ,&nbsp;Tao Li ,&nbsp;Shao-Ming Fei","doi":"10.1016/j.physleta.2025.130570","DOIUrl":null,"url":null,"abstract":"<div><div>The quantum uncertainty principle stands as a cornerstone and a distinctive feature of quantum mechanics, setting it apart from classical mechanics. We introduce a tripartite quantum-memory-assisted entropic uncertainty relation, and extend the relation to encompass multiple measurements conducted within multipartite systems. The related lower bounds are shown to be tighter than those formulated by Zhang et al. [Phys. Rev. A 108, 012211 (2023)]. Additionally, we present generalized quantum-memory-assisted entropic uncertainty relations (QMA-EURs) tailored for arbitrary positive-operator-valued measures (POVMs). Finally, we demonstrate the applications of our results to both the relative entropy of unilateral coherence and the quantum key distribution protocols.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"549 ","pages":"Article 130570"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tightening the entropic uncertainty relations with quantum memory in a multipartite scenario\",\"authors\":\"Cong Xu ,&nbsp;Qing-Hua Zhang ,&nbsp;Tao Li ,&nbsp;Shao-Ming Fei\",\"doi\":\"10.1016/j.physleta.2025.130570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The quantum uncertainty principle stands as a cornerstone and a distinctive feature of quantum mechanics, setting it apart from classical mechanics. We introduce a tripartite quantum-memory-assisted entropic uncertainty relation, and extend the relation to encompass multiple measurements conducted within multipartite systems. The related lower bounds are shown to be tighter than those formulated by Zhang et al. [Phys. Rev. A 108, 012211 (2023)]. Additionally, we present generalized quantum-memory-assisted entropic uncertainty relations (QMA-EURs) tailored for arbitrary positive-operator-valued measures (POVMs). Finally, we demonstrate the applications of our results to both the relative entropy of unilateral coherence and the quantum key distribution protocols.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"549 \",\"pages\":\"Article 130570\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125003500\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125003500","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子测不准原理是量子力学区别于经典力学的基石和显著特征。我们引入了一个三方量子记忆辅助的熵不确定性关系,并将该关系扩展到包括在多方系统内进行的多次测量。相关的下界被证明比Zhang等人制定的更严格。[j].生物工程学报,2016,31(5)。此外,我们提出了针对任意正算子值测度(povm)的广义量子记忆辅助熵不确定性关系(QMA-EURs)。最后,我们展示了我们的结果在单侧相干相对熵和量子密钥分配协议中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tightening the entropic uncertainty relations with quantum memory in a multipartite scenario
The quantum uncertainty principle stands as a cornerstone and a distinctive feature of quantum mechanics, setting it apart from classical mechanics. We introduce a tripartite quantum-memory-assisted entropic uncertainty relation, and extend the relation to encompass multiple measurements conducted within multipartite systems. The related lower bounds are shown to be tighter than those formulated by Zhang et al. [Phys. Rev. A 108, 012211 (2023)]. Additionally, we present generalized quantum-memory-assisted entropic uncertainty relations (QMA-EURs) tailored for arbitrary positive-operator-valued measures (POVMs). Finally, we demonstrate the applications of our results to both the relative entropy of unilateral coherence and the quantum key distribution protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信