应用于连分式的代数无关性判据

IF 0.8 4区 数学 Q2 MATHEMATICS
Gessica Alecci , Carsten Elsner
{"title":"应用于连分式的代数无关性判据","authors":"Gessica Alecci ,&nbsp;Carsten Elsner","doi":"10.1016/j.exmath.2025.125689","DOIUrl":null,"url":null,"abstract":"<div><div>From around 2010 onward, Elsner et al.<!--> <!--> <!-->developed and applied a method in which the algebraic independence of <span><math><mi>n</mi></math></span> quantities <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> over a field is transferred to further <span><math><mi>n</mi></math></span> quantities <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> by means of a system of polynomials in <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> variables <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. In this paper, we systematically study and explain this criterion and its variants. Moreover, we present new results concerning its application to periodic non-regular continued fractions, namely continued fractions with real numbers as partial quotients. We show that given a continued fraction of this type, this criterion can be applied to prove that not only are the convergents algebraically independent from each other, but they are also algebraically independent from the continued fraction.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 5","pages":"Article 125689"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a criterion for algebraic independence applied to continued fractions\",\"authors\":\"Gessica Alecci ,&nbsp;Carsten Elsner\",\"doi\":\"10.1016/j.exmath.2025.125689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>From around 2010 onward, Elsner et al.<!--> <!--> <!-->developed and applied a method in which the algebraic independence of <span><math><mi>n</mi></math></span> quantities <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> over a field is transferred to further <span><math><mi>n</mi></math></span> quantities <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> by means of a system of polynomials in <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> variables <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. In this paper, we systematically study and explain this criterion and its variants. Moreover, we present new results concerning its application to periodic non-regular continued fractions, namely continued fractions with real numbers as partial quotients. We show that given a continued fraction of this type, this criterion can be applied to prove that not only are the convergents algebraically independent from each other, but they are also algebraically independent from the continued fraction.</div></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":\"43 5\",\"pages\":\"Article 125689\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086925000441\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086925000441","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

从2010年左右开始,Elsner等人开发并应用了一种方法,通过2n个变量x1,…,xn, y1,…,yn的多项式系统,将一个域上n个量x1,…,xn的代数独立性转移到另外n个量y1,…,yn上。在本文中,我们系统地研究和解释了这一准则及其变体。此外,我们还对周期非正则连分数,即以实数为部分商的连分数的应用给出了新的结果。我们证明了给定一个这种类型的连分式,这个判据可以用来证明收敛性不仅在代数上相互独立,而且在代数上也与连分式无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a criterion for algebraic independence applied to continued fractions
From around 2010 onward, Elsner et al.  developed and applied a method in which the algebraic independence of n quantities x1,,xn over a field is transferred to further n quantities y1,,yn by means of a system of polynomials in 2n variables X1,,Xn,Y1,,Yn. In this paper, we systematically study and explain this criterion and its variants. Moreover, we present new results concerning its application to periodic non-regular continued fractions, namely continued fractions with real numbers as partial quotients. We show that given a continued fraction of this type, this criterion can be applied to prove that not only are the convergents algebraically independent from each other, but they are also algebraically independent from the continued fraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信