{"title":"应用于连分式的代数无关性判据","authors":"Gessica Alecci , Carsten Elsner","doi":"10.1016/j.exmath.2025.125689","DOIUrl":null,"url":null,"abstract":"<div><div>From around 2010 onward, Elsner et al.<!--> <!--> <!-->developed and applied a method in which the algebraic independence of <span><math><mi>n</mi></math></span> quantities <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> over a field is transferred to further <span><math><mi>n</mi></math></span> quantities <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> by means of a system of polynomials in <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> variables <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. In this paper, we systematically study and explain this criterion and its variants. Moreover, we present new results concerning its application to periodic non-regular continued fractions, namely continued fractions with real numbers as partial quotients. We show that given a continued fraction of this type, this criterion can be applied to prove that not only are the convergents algebraically independent from each other, but they are also algebraically independent from the continued fraction.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 5","pages":"Article 125689"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a criterion for algebraic independence applied to continued fractions\",\"authors\":\"Gessica Alecci , Carsten Elsner\",\"doi\":\"10.1016/j.exmath.2025.125689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>From around 2010 onward, Elsner et al.<!--> <!--> <!-->developed and applied a method in which the algebraic independence of <span><math><mi>n</mi></math></span> quantities <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> over a field is transferred to further <span><math><mi>n</mi></math></span> quantities <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> by means of a system of polynomials in <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> variables <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. In this paper, we systematically study and explain this criterion and its variants. Moreover, we present new results concerning its application to periodic non-regular continued fractions, namely continued fractions with real numbers as partial quotients. We show that given a continued fraction of this type, this criterion can be applied to prove that not only are the convergents algebraically independent from each other, but they are also algebraically independent from the continued fraction.</div></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":\"43 5\",\"pages\":\"Article 125689\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086925000441\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086925000441","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a criterion for algebraic independence applied to continued fractions
From around 2010 onward, Elsner et al. developed and applied a method in which the algebraic independence of quantities over a field is transferred to further quantities by means of a system of polynomials in variables . In this paper, we systematically study and explain this criterion and its variants. Moreover, we present new results concerning its application to periodic non-regular continued fractions, namely continued fractions with real numbers as partial quotients. We show that given a continued fraction of this type, this criterion can be applied to prove that not only are the convergents algebraically independent from each other, but they are also algebraically independent from the continued fraction.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.