基于鲁棒命令滤波的航天器交会模型预测控制

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Yuan Li , Xuebo Yang , Xiaolong Zheng , Zhongbo Chen , Jiatong Wang
{"title":"基于鲁棒命令滤波的航天器交会模型预测控制","authors":"Yuan Li ,&nbsp;Xuebo Yang ,&nbsp;Xiaolong Zheng ,&nbsp;Zhongbo Chen ,&nbsp;Jiatong Wang","doi":"10.1016/j.jfranklin.2025.107632","DOIUrl":null,"url":null,"abstract":"<div><div>The spacecraft rendezvous problem under external disturbances represents a significant and challenging research area. To enhance the accuracy of spacecraft rendezvous, this paper develops a model predictive control algorithm augmented by a function-adaptive law (FAL). The FAL is introduced to estimate and compensate for unknown disturbances in the aerospace environment effectively. A notable feature of this FAL is its integration with a robust command filtering (RCF) algorithm, which includes three key subtask modules: derivative excitation, noise suppression, and feedback correction. This meticulously designed structure enables the suppression of high-frequency components in the signal while accurately extracting its differential information. The paper provides a theoretical analysis of the recursive feasibility and stability of the designed model predictive controller and validates the controller’s effectiveness through a series of simulation experiments.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 8","pages":"Article 107632"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust command filter-based model predictive control for spacecraft rendezvous\",\"authors\":\"Yuan Li ,&nbsp;Xuebo Yang ,&nbsp;Xiaolong Zheng ,&nbsp;Zhongbo Chen ,&nbsp;Jiatong Wang\",\"doi\":\"10.1016/j.jfranklin.2025.107632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The spacecraft rendezvous problem under external disturbances represents a significant and challenging research area. To enhance the accuracy of spacecraft rendezvous, this paper develops a model predictive control algorithm augmented by a function-adaptive law (FAL). The FAL is introduced to estimate and compensate for unknown disturbances in the aerospace environment effectively. A notable feature of this FAL is its integration with a robust command filtering (RCF) algorithm, which includes three key subtask modules: derivative excitation, noise suppression, and feedback correction. This meticulously designed structure enables the suppression of high-frequency components in the signal while accurately extracting its differential information. The paper provides a theoretical analysis of the recursive feasibility and stability of the designed model predictive controller and validates the controller’s effectiveness through a series of simulation experiments.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"362 8\",\"pages\":\"Article 107632\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003225001267\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225001267","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

外部干扰下的航天器交会问题是一个重要而富有挑战性的研究领域。为了提高航天器交会精度,提出了一种基于函数自适应律增强的模型预测控制算法。引入FAL可以有效地估计和补偿航空环境中的未知干扰。该FAL的一个显著特征是它与鲁棒命令滤波(RCF)算法的集成,该算法包括三个关键子任务模块:导数激励、噪声抑制和反馈校正。这种精心设计的结构能够抑制信号中的高频成分,同时准确地提取其差分信息。本文从理论上分析了所设计模型预测控制器的递归可行性和稳定性,并通过一系列仿真实验验证了控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust command filter-based model predictive control for spacecraft rendezvous
The spacecraft rendezvous problem under external disturbances represents a significant and challenging research area. To enhance the accuracy of spacecraft rendezvous, this paper develops a model predictive control algorithm augmented by a function-adaptive law (FAL). The FAL is introduced to estimate and compensate for unknown disturbances in the aerospace environment effectively. A notable feature of this FAL is its integration with a robust command filtering (RCF) algorithm, which includes three key subtask modules: derivative excitation, noise suppression, and feedback correction. This meticulously designed structure enables the suppression of high-frequency components in the signal while accurately extracting its differential information. The paper provides a theoretical analysis of the recursive feasibility and stability of the designed model predictive controller and validates the controller’s effectiveness through a series of simulation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信