利用保形预测和高斯过程捕捉黑箱色谱建模中的不确定性

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tien Dung Pham , Robert Bassett , Uwe Aickelin
{"title":"利用保形预测和高斯过程捕捉黑箱色谱建模中的不确定性","authors":"Tien Dung Pham ,&nbsp;Robert Bassett ,&nbsp;Uwe Aickelin","doi":"10.1016/j.compchemeng.2025.109136","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrate that conformal predictors – specifically conformalised quantile regression (CQR) and locally adaptive conformal predictors (LACP) – outperform the commonly used Gaussian Process Regression (GPR) in uncertainty quantification of machine learning surrogate models for chromatography modelling. CQR excelled in black-box scenarios, effectively estimating challenging target variable distributions, while LACP provided extremely informative intervals when kinetic parameters were included. Incorporating kinetic data significantly reduced epistemic uncertainty and increased model accuracy, supporting the hypothesis that adding mechanistic data to black-box models improves prediction uncertainty. This study represents the first application of conformal methods in chromatography modelling, indicating high applicability of this new uncertainty quantification methodology. Our findings offer a promising direction for advancing uncertainty quantification methods in data-driven bioprocess modelling and optimisation.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"199 ","pages":"Article 109136"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capturing uncertainty in black-box chromatography modelling using conformal prediction and Gaussian processes\",\"authors\":\"Tien Dung Pham ,&nbsp;Robert Bassett ,&nbsp;Uwe Aickelin\",\"doi\":\"10.1016/j.compchemeng.2025.109136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We demonstrate that conformal predictors – specifically conformalised quantile regression (CQR) and locally adaptive conformal predictors (LACP) – outperform the commonly used Gaussian Process Regression (GPR) in uncertainty quantification of machine learning surrogate models for chromatography modelling. CQR excelled in black-box scenarios, effectively estimating challenging target variable distributions, while LACP provided extremely informative intervals when kinetic parameters were included. Incorporating kinetic data significantly reduced epistemic uncertainty and increased model accuracy, supporting the hypothesis that adding mechanistic data to black-box models improves prediction uncertainty. This study represents the first application of conformal methods in chromatography modelling, indicating high applicability of this new uncertainty quantification methodology. Our findings offer a promising direction for advancing uncertainty quantification methods in data-driven bioprocess modelling and optimisation.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"199 \",\"pages\":\"Article 109136\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425001401\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001401","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了适形预测器-特别是适形分位数回归(CQR)和局部自适应适形预测器(LACP) -在色谱建模的机器学习代理模型的不确定性量化中优于常用的高斯过程回归(GPR)。CQR在黑箱场景中表现出色,有效地估计了具有挑战性的目标变量分布,而LACP在包含动力学参数时提供了极具信息量的区间。结合动力学数据显著降低了认知的不确定性,提高了模型的准确性,支持了在黑箱模型中加入机械数据可以改善预测不确定性的假设。本研究代表了保形方法在色谱建模中的首次应用,表明这种新的不确定度量化方法具有很高的适用性。我们的发现为在数据驱动的生物过程建模和优化中推进不确定性量化方法提供了一个有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing uncertainty in black-box chromatography modelling using conformal prediction and Gaussian processes
We demonstrate that conformal predictors – specifically conformalised quantile regression (CQR) and locally adaptive conformal predictors (LACP) – outperform the commonly used Gaussian Process Regression (GPR) in uncertainty quantification of machine learning surrogate models for chromatography modelling. CQR excelled in black-box scenarios, effectively estimating challenging target variable distributions, while LACP provided extremely informative intervals when kinetic parameters were included. Incorporating kinetic data significantly reduced epistemic uncertainty and increased model accuracy, supporting the hypothesis that adding mechanistic data to black-box models improves prediction uncertainty. This study represents the first application of conformal methods in chromatography modelling, indicating high applicability of this new uncertainty quantification methodology. Our findings offer a promising direction for advancing uncertainty quantification methods in data-driven bioprocess modelling and optimisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信