求解二维介质逆问题的Neumann级数神经算子

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ziyang Liu , Fukai Chen , Junqing Chen , Lingyun Qiu , Zuoqiang Shi
{"title":"求解二维介质逆问题的Neumann级数神经算子","authors":"Ziyang Liu ,&nbsp;Fukai Chen ,&nbsp;Junqing Chen ,&nbsp;Lingyun Qiu ,&nbsp;Zuoqiang Shi","doi":"10.1016/j.jcp.2025.114025","DOIUrl":null,"url":null,"abstract":"<div><div>The inverse medium problem, inherently ill-posed and nonlinear, poses significant computational challenges. We adopt a physics-assisted approach, utilizing a neural operator as a surrogate solver for the forward problem to accelerate reconstruction. Existing neural network methods fail to effectively solve the forward problem when simultaneously handling source and scatterer parameters as inputs. To overcome this, we propose integrating a Neumann series structure to efficiently manage such multi-input scenarios. Extensive experimental results demonstrate the framework's superior computational efficiency, robust generalization, and adaptability, offering valuable insights for solving similar inverse problems.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"534 ","pages":"Article 114025"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neumann series-based neural operator for solving 2D inverse medium problem\",\"authors\":\"Ziyang Liu ,&nbsp;Fukai Chen ,&nbsp;Junqing Chen ,&nbsp;Lingyun Qiu ,&nbsp;Zuoqiang Shi\",\"doi\":\"10.1016/j.jcp.2025.114025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The inverse medium problem, inherently ill-posed and nonlinear, poses significant computational challenges. We adopt a physics-assisted approach, utilizing a neural operator as a surrogate solver for the forward problem to accelerate reconstruction. Existing neural network methods fail to effectively solve the forward problem when simultaneously handling source and scatterer parameters as inputs. To overcome this, we propose integrating a Neumann series structure to efficiently manage such multi-input scenarios. Extensive experimental results demonstrate the framework's superior computational efficiency, robust generalization, and adaptability, offering valuable insights for solving similar inverse problems.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"534 \",\"pages\":\"Article 114025\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125003080\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003080","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

逆介质问题固有的病态和非线性,给计算带来了巨大的挑战。我们采用物理辅助方法,利用神经算子作为正向问题的代理求解器来加速重建。现有的神经网络方法在同时处理源和散射参数作为输入时,不能有效地解决正演问题。为了克服这个问题,我们提出整合一个诺伊曼级数结构来有效地管理这种多输入场景。大量的实验结果表明,该框架具有优越的计算效率、强大的泛化能力和适应性,为解决类似的逆问题提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neumann series-based neural operator for solving 2D inverse medium problem
The inverse medium problem, inherently ill-posed and nonlinear, poses significant computational challenges. We adopt a physics-assisted approach, utilizing a neural operator as a surrogate solver for the forward problem to accelerate reconstruction. Existing neural network methods fail to effectively solve the forward problem when simultaneously handling source and scatterer parameters as inputs. To overcome this, we propose integrating a Neumann series structure to efficiently manage such multi-input scenarios. Extensive experimental results demonstrate the framework's superior computational efficiency, robust generalization, and adaptability, offering valuable insights for solving similar inverse problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信