Zhijian Hu , Huaxin Liu , Jianyong Liu , Songqiu Yang , Hongming Yin
{"title":"热蚀刻和水热预处理协同工程制备C3N4纳米片,用于光催化制氢和去除污染物","authors":"Zhijian Hu , Huaxin Liu , Jianyong Liu , Songqiu Yang , Hongming Yin","doi":"10.1016/j.cplett.2025.142100","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a hydrothermal-thermal etching strategy to synthesize layered C₃N₄ nanosheets, to address the structure collapse limits of conventional calcination. The synergistic method retains the layered architecture while boosting surface area (136.5 m<sup>2</sup>·g<sup>−1</sup>) and porosity. Optimized C₃N₄(H)-6 h nanosheets demonstrate a 5-fold enhanced hydrogen evolution rate (450 μmol·h<sup>−1</sup>·g<sup>−1</sup>) and 97.6 % methylene blue degradation under visible light, outperforming bulk C₃N₄. Superior performance stems from improved charge separation, extended carrier lifetime, and enriched active sites. This scalable approach advances high-efficiency, solar-driven photocatalysts for sustainable energy conversion and environmental remediation.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"870 ","pages":"Article 142100"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic engineering of C3N4 Nanosheets via thermal etching and hydrothermal pretreatment for superior photocatalytic hydrogen production and pollutant removal\",\"authors\":\"Zhijian Hu , Huaxin Liu , Jianyong Liu , Songqiu Yang , Hongming Yin\",\"doi\":\"10.1016/j.cplett.2025.142100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a hydrothermal-thermal etching strategy to synthesize layered C₃N₄ nanosheets, to address the structure collapse limits of conventional calcination. The synergistic method retains the layered architecture while boosting surface area (136.5 m<sup>2</sup>·g<sup>−1</sup>) and porosity. Optimized C₃N₄(H)-6 h nanosheets demonstrate a 5-fold enhanced hydrogen evolution rate (450 μmol·h<sup>−1</sup>·g<sup>−1</sup>) and 97.6 % methylene blue degradation under visible light, outperforming bulk C₃N₄. Superior performance stems from improved charge separation, extended carrier lifetime, and enriched active sites. This scalable approach advances high-efficiency, solar-driven photocatalysts for sustainable energy conversion and environmental remediation.</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"870 \",\"pages\":\"Article 142100\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261425002404\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261425002404","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种水热-热蚀刻策略,用于合成层状₃N₄ 纳米片,以解决传统煅烧的结构塌缩限制。这种协同方法保留了分层结构,同时提高了表面积(136.5 m2-g-1)和孔隙率。优化后的₃N₄(H)-6 h 纳米片在可见光下的氢进化率(450 μmol-h-1-g-1)和亚甲基蓝降解率分别提高了 5 倍和 97.6%,优于块状 C₃N₄。优异的性能源于改进的电荷分离、延长的载流子寿命和丰富的活性位点。这种可扩展的方法推动了可持续能源转换和环境修复所需的高效太阳能光催化剂的发展。
Synergistic engineering of C3N4 Nanosheets via thermal etching and hydrothermal pretreatment for superior photocatalytic hydrogen production and pollutant removal
This study presents a hydrothermal-thermal etching strategy to synthesize layered C₃N₄ nanosheets, to address the structure collapse limits of conventional calcination. The synergistic method retains the layered architecture while boosting surface area (136.5 m2·g−1) and porosity. Optimized C₃N₄(H)-6 h nanosheets demonstrate a 5-fold enhanced hydrogen evolution rate (450 μmol·h−1·g−1) and 97.6 % methylene blue degradation under visible light, outperforming bulk C₃N₄. Superior performance stems from improved charge separation, extended carrier lifetime, and enriched active sites. This scalable approach advances high-efficiency, solar-driven photocatalysts for sustainable energy conversion and environmental remediation.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.