叶分割:一个易于计算的图状态的lc不变量

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-04-24 DOI:10.22331/q-2025-04-24-1720
Adam Burchardt, Frederik Hahn
{"title":"叶分割:一个易于计算的图状态的lc不变量","authors":"Adam Burchardt, Frederik Hahn","doi":"10.22331/q-2025-04-24-1720","DOIUrl":null,"url":null,"abstract":"This paper introduces the foliage partition, an easy-to-compute LC-invariant for graph states, of computational complexity $\\mathcal{O}(n^3)$ in the number of qubits. Inspired by the foliage of a graph, our invariant has a natural graphical representation in terms of leaves, axils, and twins. It captures both, the connection structure of a graph and the $2$-body marginal properties of the associated graph state. We relate the foliage partition to the size of LC-orbits and use it to bound the number of LC-automorphisms of graphs. We also show the invariance of the foliage partition when generalized to weighted graphs and qudit graph states.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"2 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Foliage Partition: An Easy-to-Compute LC-Invariant for Graph States\",\"authors\":\"Adam Burchardt, Frederik Hahn\",\"doi\":\"10.22331/q-2025-04-24-1720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the foliage partition, an easy-to-compute LC-invariant for graph states, of computational complexity $\\\\mathcal{O}(n^3)$ in the number of qubits. Inspired by the foliage of a graph, our invariant has a natural graphical representation in terms of leaves, axils, and twins. It captures both, the connection structure of a graph and the $2$-body marginal properties of the associated graph state. We relate the foliage partition to the size of LC-orbits and use it to bound the number of LC-automorphisms of graphs. We also show the invariance of the foliage partition when generalized to weighted graphs and qudit graph states.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-04-24-1720\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-24-1720","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种易于计算的图态lc不变量叶子分割,其计算复杂度为$\mathcal{O}(n^3)$。受图的叶子的启发,我们的不变量具有树叶、叶腋和双胞胎的自然图形表示。它捕获两者,即图的连接结构和关联图状态的$2$体边缘属性。我们将叶分割与lc -轨道的大小联系起来,并用它来约束图的lc -自同构的数量。我们还证明了叶分割在推广到加权图和qudit图状态时的不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Foliage Partition: An Easy-to-Compute LC-Invariant for Graph States
This paper introduces the foliage partition, an easy-to-compute LC-invariant for graph states, of computational complexity $\mathcal{O}(n^3)$ in the number of qubits. Inspired by the foliage of a graph, our invariant has a natural graphical representation in terms of leaves, axils, and twins. It captures both, the connection structure of a graph and the $2$-body marginal properties of the associated graph state. We relate the foliage partition to the size of LC-orbits and use it to bound the number of LC-automorphisms of graphs. We also show the invariance of the foliage partition when generalized to weighted graphs and qudit graph states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信