高价铋的准线性磁电阻和顺磁奇异性

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhongchen Xu, Yi Yan, Zhihao Liu, Jie Pang, Guohao Dong, Xiutong Deng, Shengnan Zhang, Xianmin Zhang, Youguo Shi, Quansheng Wu
{"title":"高价铋的准线性磁电阻和顺磁奇异性","authors":"Zhongchen Xu, Yi Yan, Zhihao Liu, Jie Pang, Guohao Dong, Xiutong Deng, Shengnan Zhang, Xianmin Zhang, Youguo Shi, Quansheng Wu","doi":"10.1038/s41535-025-00758-3","DOIUrl":null,"url":null,"abstract":"<p>Materials featuring hypervalent bismuth motifs have generated immense interest due to their extraordinary electronic structure and exotic quantum transport. In this study, we synthesized high-quality single crystals of La<sub>3</sub>ScBi<sub>5</sub> characterized by one-dimensional hypervalent bismuth chains and performed a systematic investigation of the magnetoresistive behavior and quantum oscillations. The metallic La<sub>3</sub>ScBi<sub>5</sub> exhibits a low-temperature plateau of electrical resistivity and quasi-linear positive magnetoresistance, with anisotropic magnetoresistive behaviors suggesting the presence of anisotropic Fermi surfaces. This distinctive transport phenomenon is perfectly elucidated by first-principles calculations utilizing the semiclassical Boltzmann transport theory. Furthermore, the nonlinear Hall resistivity pointed towards a multiband electronic structure, characterized by the coexistence of electron and hole carriers, which is further supported by our first-principles calculations. Angle-dependent de Haas-van Alphen oscillations are crucial for further elucidating its Fermiology and topological characteristics. Intriguingly, magnetization measurements unveiled a notable paramagnetic singularity at low fields, which might suggest the nontrivial nature of the surface states. Our findings underscore the interplay between transport phenomena and the unique electronic structure of hypervalent bismuthide La<sub>3</sub>ScBi<sub>5</sub>, opening avenues for exploring novel electronic applications.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"22 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-linear magnetoresistance and paramagnetic singularity in hypervalent bismuthide\",\"authors\":\"Zhongchen Xu, Yi Yan, Zhihao Liu, Jie Pang, Guohao Dong, Xiutong Deng, Shengnan Zhang, Xianmin Zhang, Youguo Shi, Quansheng Wu\",\"doi\":\"10.1038/s41535-025-00758-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Materials featuring hypervalent bismuth motifs have generated immense interest due to their extraordinary electronic structure and exotic quantum transport. In this study, we synthesized high-quality single crystals of La<sub>3</sub>ScBi<sub>5</sub> characterized by one-dimensional hypervalent bismuth chains and performed a systematic investigation of the magnetoresistive behavior and quantum oscillations. The metallic La<sub>3</sub>ScBi<sub>5</sub> exhibits a low-temperature plateau of electrical resistivity and quasi-linear positive magnetoresistance, with anisotropic magnetoresistive behaviors suggesting the presence of anisotropic Fermi surfaces. This distinctive transport phenomenon is perfectly elucidated by first-principles calculations utilizing the semiclassical Boltzmann transport theory. Furthermore, the nonlinear Hall resistivity pointed towards a multiband electronic structure, characterized by the coexistence of electron and hole carriers, which is further supported by our first-principles calculations. Angle-dependent de Haas-van Alphen oscillations are crucial for further elucidating its Fermiology and topological characteristics. Intriguingly, magnetization measurements unveiled a notable paramagnetic singularity at low fields, which might suggest the nontrivial nature of the surface states. Our findings underscore the interplay between transport phenomena and the unique electronic structure of hypervalent bismuthide La<sub>3</sub>ScBi<sub>5</sub>, opening avenues for exploring novel electronic applications.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00758-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00758-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有高价铋基序的材料由于其特殊的电子结构和奇异的量子输运而引起了极大的兴趣。在这项研究中,我们合成了具有一维高价铋链特征的La3ScBi5单晶,并对其磁阻行为和量子振荡进行了系统的研究。金属La3ScBi5表现出低温电阻率平台和准线性正磁阻,具有各向异性磁阻行为,表明存在各向异性费米面。利用半经典玻尔兹曼输运理论的第一性原理计算完美地阐明了这种独特的输运现象。此外,非线性霍尔电阻率指向以电子和空穴载流子共存为特征的多带电子结构,这进一步得到了第一性原理计算的支持。角相关的德哈斯-范阿尔芬振荡对进一步阐明其费米学和拓扑特性至关重要。有趣的是,磁化测量揭示了低磁场下显著的顺磁奇点,这可能表明表面状态的非平凡性质。我们的发现强调了输运现象与高价铋La3ScBi5独特的电子结构之间的相互作用,为探索新的电子应用开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quasi-linear magnetoresistance and paramagnetic singularity in hypervalent bismuthide

Quasi-linear magnetoresistance and paramagnetic singularity in hypervalent bismuthide

Materials featuring hypervalent bismuth motifs have generated immense interest due to their extraordinary electronic structure and exotic quantum transport. In this study, we synthesized high-quality single crystals of La3ScBi5 characterized by one-dimensional hypervalent bismuth chains and performed a systematic investigation of the magnetoresistive behavior and quantum oscillations. The metallic La3ScBi5 exhibits a low-temperature plateau of electrical resistivity and quasi-linear positive magnetoresistance, with anisotropic magnetoresistive behaviors suggesting the presence of anisotropic Fermi surfaces. This distinctive transport phenomenon is perfectly elucidated by first-principles calculations utilizing the semiclassical Boltzmann transport theory. Furthermore, the nonlinear Hall resistivity pointed towards a multiband electronic structure, characterized by the coexistence of electron and hole carriers, which is further supported by our first-principles calculations. Angle-dependent de Haas-van Alphen oscillations are crucial for further elucidating its Fermiology and topological characteristics. Intriguingly, magnetization measurements unveiled a notable paramagnetic singularity at low fields, which might suggest the nontrivial nature of the surface states. Our findings underscore the interplay between transport phenomena and the unique electronic structure of hypervalent bismuthide La3ScBi5, opening avenues for exploring novel electronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信