Zhongchen Xu, Yi Yan, Zhihao Liu, Jie Pang, Guohao Dong, Xiutong Deng, Shengnan Zhang, Xianmin Zhang, Youguo Shi, Quansheng Wu
{"title":"高价铋的准线性磁电阻和顺磁奇异性","authors":"Zhongchen Xu, Yi Yan, Zhihao Liu, Jie Pang, Guohao Dong, Xiutong Deng, Shengnan Zhang, Xianmin Zhang, Youguo Shi, Quansheng Wu","doi":"10.1038/s41535-025-00758-3","DOIUrl":null,"url":null,"abstract":"<p>Materials featuring hypervalent bismuth motifs have generated immense interest due to their extraordinary electronic structure and exotic quantum transport. In this study, we synthesized high-quality single crystals of La<sub>3</sub>ScBi<sub>5</sub> characterized by one-dimensional hypervalent bismuth chains and performed a systematic investigation of the magnetoresistive behavior and quantum oscillations. The metallic La<sub>3</sub>ScBi<sub>5</sub> exhibits a low-temperature plateau of electrical resistivity and quasi-linear positive magnetoresistance, with anisotropic magnetoresistive behaviors suggesting the presence of anisotropic Fermi surfaces. This distinctive transport phenomenon is perfectly elucidated by first-principles calculations utilizing the semiclassical Boltzmann transport theory. Furthermore, the nonlinear Hall resistivity pointed towards a multiband electronic structure, characterized by the coexistence of electron and hole carriers, which is further supported by our first-principles calculations. Angle-dependent de Haas-van Alphen oscillations are crucial for further elucidating its Fermiology and topological characteristics. Intriguingly, magnetization measurements unveiled a notable paramagnetic singularity at low fields, which might suggest the nontrivial nature of the surface states. Our findings underscore the interplay between transport phenomena and the unique electronic structure of hypervalent bismuthide La<sub>3</sub>ScBi<sub>5</sub>, opening avenues for exploring novel electronic applications.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"22 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-linear magnetoresistance and paramagnetic singularity in hypervalent bismuthide\",\"authors\":\"Zhongchen Xu, Yi Yan, Zhihao Liu, Jie Pang, Guohao Dong, Xiutong Deng, Shengnan Zhang, Xianmin Zhang, Youguo Shi, Quansheng Wu\",\"doi\":\"10.1038/s41535-025-00758-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Materials featuring hypervalent bismuth motifs have generated immense interest due to their extraordinary electronic structure and exotic quantum transport. In this study, we synthesized high-quality single crystals of La<sub>3</sub>ScBi<sub>5</sub> characterized by one-dimensional hypervalent bismuth chains and performed a systematic investigation of the magnetoresistive behavior and quantum oscillations. The metallic La<sub>3</sub>ScBi<sub>5</sub> exhibits a low-temperature plateau of electrical resistivity and quasi-linear positive magnetoresistance, with anisotropic magnetoresistive behaviors suggesting the presence of anisotropic Fermi surfaces. This distinctive transport phenomenon is perfectly elucidated by first-principles calculations utilizing the semiclassical Boltzmann transport theory. Furthermore, the nonlinear Hall resistivity pointed towards a multiband electronic structure, characterized by the coexistence of electron and hole carriers, which is further supported by our first-principles calculations. Angle-dependent de Haas-van Alphen oscillations are crucial for further elucidating its Fermiology and topological characteristics. Intriguingly, magnetization measurements unveiled a notable paramagnetic singularity at low fields, which might suggest the nontrivial nature of the surface states. Our findings underscore the interplay between transport phenomena and the unique electronic structure of hypervalent bismuthide La<sub>3</sub>ScBi<sub>5</sub>, opening avenues for exploring novel electronic applications.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00758-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00758-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Quasi-linear magnetoresistance and paramagnetic singularity in hypervalent bismuthide
Materials featuring hypervalent bismuth motifs have generated immense interest due to their extraordinary electronic structure and exotic quantum transport. In this study, we synthesized high-quality single crystals of La3ScBi5 characterized by one-dimensional hypervalent bismuth chains and performed a systematic investigation of the magnetoresistive behavior and quantum oscillations. The metallic La3ScBi5 exhibits a low-temperature plateau of electrical resistivity and quasi-linear positive magnetoresistance, with anisotropic magnetoresistive behaviors suggesting the presence of anisotropic Fermi surfaces. This distinctive transport phenomenon is perfectly elucidated by first-principles calculations utilizing the semiclassical Boltzmann transport theory. Furthermore, the nonlinear Hall resistivity pointed towards a multiband electronic structure, characterized by the coexistence of electron and hole carriers, which is further supported by our first-principles calculations. Angle-dependent de Haas-van Alphen oscillations are crucial for further elucidating its Fermiology and topological characteristics. Intriguingly, magnetization measurements unveiled a notable paramagnetic singularity at low fields, which might suggest the nontrivial nature of the surface states. Our findings underscore the interplay between transport phenomena and the unique electronic structure of hypervalent bismuthide La3ScBi5, opening avenues for exploring novel electronic applications.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.