基于ris的无线供电抗干扰通信网络(WPAJCN)吞吐量改进

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Zheng Chu;David Chieng;Chiew Foong Kwong;Huan Jin;Zhengyu Zhu;Chongwen Huang;Chau Yuen
{"title":"基于ris的无线供电抗干扰通信网络(WPAJCN)吞吐量改进","authors":"Zheng Chu;David Chieng;Chiew Foong Kwong;Huan Jin;Zhengyu Zhu;Chongwen Huang;Chau Yuen","doi":"10.1109/TIFS.2025.3563818","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a reconfigurable intelligent surface (RIS)-aided wireless powered anti-jamming communication network (WPAJCN), where the RIS is utilized to participate in downlink wireless power transfer (WPT), as well as uplink anti-jamming wireless information transfer (AJ-WIT). To evaluate the network anti-jamming performance, we maximize a sum anti-jamming throughput, with the constraints of downlink WPT and uplink AJ-WIT time scheduling, and unit-modulus RIS phase shifts. The formulated problem is not convex in terms of these two types of coupled variables, which cannot be directly solved. To address this problem, the Lagrange dual method and Karush-Kuhn-Tucker conditions are presented to transform its sum-of-logarithmic objective function into the logarithmically fractional counterpart, which reformulate the original problem into that with respect to RIS phase shift vectors and WPT time scheduling. Next, we propose to apply the Dinkelback algorithm to solve a non-linear fractional programming with respect to the downlink WPT and uplink AJ-WIT RIS phase shifts in an alternating fashion, each of which is derived into a semi-closed solution by utilizing the Riemannian Manifold Optimization (RMO). In addition, the optimal WPT time scheduling is obtained by numerical search. Finally, the numerical results are demonstrated to confirm the improved performance of the proposed approach compared to the benchmark counterparts, which highlights the that RIS can effectively enhance the uplink anti-jamming WIT capability as well as the downlink WPT efficiency.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"4622-4637"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Throughput Improvement for RIS-Empowered Wireless Powered Anti-Jamming Communication Networks (WPAJCN)\",\"authors\":\"Zheng Chu;David Chieng;Chiew Foong Kwong;Huan Jin;Zhengyu Zhu;Chongwen Huang;Chau Yuen\",\"doi\":\"10.1109/TIFS.2025.3563818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a reconfigurable intelligent surface (RIS)-aided wireless powered anti-jamming communication network (WPAJCN), where the RIS is utilized to participate in downlink wireless power transfer (WPT), as well as uplink anti-jamming wireless information transfer (AJ-WIT). To evaluate the network anti-jamming performance, we maximize a sum anti-jamming throughput, with the constraints of downlink WPT and uplink AJ-WIT time scheduling, and unit-modulus RIS phase shifts. The formulated problem is not convex in terms of these two types of coupled variables, which cannot be directly solved. To address this problem, the Lagrange dual method and Karush-Kuhn-Tucker conditions are presented to transform its sum-of-logarithmic objective function into the logarithmically fractional counterpart, which reformulate the original problem into that with respect to RIS phase shift vectors and WPT time scheduling. Next, we propose to apply the Dinkelback algorithm to solve a non-linear fractional programming with respect to the downlink WPT and uplink AJ-WIT RIS phase shifts in an alternating fashion, each of which is derived into a semi-closed solution by utilizing the Riemannian Manifold Optimization (RMO). In addition, the optimal WPT time scheduling is obtained by numerical search. Finally, the numerical results are demonstrated to confirm the improved performance of the proposed approach compared to the benchmark counterparts, which highlights the that RIS can effectively enhance the uplink anti-jamming WIT capability as well as the downlink WPT efficiency.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"4622-4637\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10975019/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10975019/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种可重构智能表面(RIS)辅助无线供电抗干扰通信网络(WPAJCN),利用RIS参与下行无线电力传输(WPT)和上行抗干扰无线信息传输(AJ-WIT)。为了评估网络的抗干扰性能,我们在下行WPT和上行j - wit时间调度以及单位模RIS相移的约束下,最大化了一个总和的抗干扰吞吐量。对于这两类耦合变量,公式问题不是凸的,不能直接求解。为了解决这一问题,提出了拉格朗日对偶方法和Karush-Kuhn-Tucker条件,将其对数和目标函数转化为对数分数目标函数,将原问题重新表述为RIS相移矢量和WPT时间调度问题。接下来,我们建议应用Dinkelback算法来解决关于下行WPT和上行j - wit RIS相移的非线性分数规划,每个相移都通过利用黎曼流形优化(RMO)导出为半封闭解。此外,通过数值搜索得到了WPT的最优调度。最后,通过数值仿真验证了该方法与基准测试方法相比的性能改进,突出表明RIS可以有效提高上行链路抗干扰WIT能力和下行链路WPT效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Throughput Improvement for RIS-Empowered Wireless Powered Anti-Jamming Communication Networks (WPAJCN)
In this paper, we propose a reconfigurable intelligent surface (RIS)-aided wireless powered anti-jamming communication network (WPAJCN), where the RIS is utilized to participate in downlink wireless power transfer (WPT), as well as uplink anti-jamming wireless information transfer (AJ-WIT). To evaluate the network anti-jamming performance, we maximize a sum anti-jamming throughput, with the constraints of downlink WPT and uplink AJ-WIT time scheduling, and unit-modulus RIS phase shifts. The formulated problem is not convex in terms of these two types of coupled variables, which cannot be directly solved. To address this problem, the Lagrange dual method and Karush-Kuhn-Tucker conditions are presented to transform its sum-of-logarithmic objective function into the logarithmically fractional counterpart, which reformulate the original problem into that with respect to RIS phase shift vectors and WPT time scheduling. Next, we propose to apply the Dinkelback algorithm to solve a non-linear fractional programming with respect to the downlink WPT and uplink AJ-WIT RIS phase shifts in an alternating fashion, each of which is derived into a semi-closed solution by utilizing the Riemannian Manifold Optimization (RMO). In addition, the optimal WPT time scheduling is obtained by numerical search. Finally, the numerical results are demonstrated to confirm the improved performance of the proposed approach compared to the benchmark counterparts, which highlights the that RIS can effectively enhance the uplink anti-jamming WIT capability as well as the downlink WPT efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信