{"title":"平流-扩散的时空可杂化不连续Galerkin方法:平流主导型","authors":"Yuan Wang, Sander Rhebergen","doi":"10.1093/imanum/draf013","DOIUrl":null,"url":null,"abstract":"We analyze a space-time hybridizable discontinuous Galerkin method to solve the time-dependent advection-diffusion equation. We prove stability of the discretization in the advection-dominated regime by using weighted test functions and derive a priori space-time error estimates. Numerical examples illustrate the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"31 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-time hybridizable discontinuous Galerkin method for advection-diffusion: the advection-dominated regime\",\"authors\":\"Yuan Wang, Sander Rhebergen\",\"doi\":\"10.1093/imanum/draf013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze a space-time hybridizable discontinuous Galerkin method to solve the time-dependent advection-diffusion equation. We prove stability of the discretization in the advection-dominated regime by using weighted test functions and derive a priori space-time error estimates. Numerical examples illustrate the theoretical results.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf013\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Space-time hybridizable discontinuous Galerkin method for advection-diffusion: the advection-dominated regime
We analyze a space-time hybridizable discontinuous Galerkin method to solve the time-dependent advection-diffusion equation. We prove stability of the discretization in the advection-dominated regime by using weighted test functions and derive a priori space-time error estimates. Numerical examples illustrate the theoretical results.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.