平流-扩散的时空可杂化不连续Galerkin方法:平流主导型

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Yuan Wang, Sander Rhebergen
{"title":"平流-扩散的时空可杂化不连续Galerkin方法:平流主导型","authors":"Yuan Wang, Sander Rhebergen","doi":"10.1093/imanum/draf013","DOIUrl":null,"url":null,"abstract":"We analyze a space-time hybridizable discontinuous Galerkin method to solve the time-dependent advection-diffusion equation. We prove stability of the discretization in the advection-dominated regime by using weighted test functions and derive a priori space-time error estimates. Numerical examples illustrate the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"31 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-time hybridizable discontinuous Galerkin method for advection-diffusion: the advection-dominated regime\",\"authors\":\"Yuan Wang, Sander Rhebergen\",\"doi\":\"10.1093/imanum/draf013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze a space-time hybridizable discontinuous Galerkin method to solve the time-dependent advection-diffusion equation. We prove stability of the discretization in the advection-dominated regime by using weighted test functions and derive a priori space-time error estimates. Numerical examples illustrate the theoretical results.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf013\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

分析了求解随时间变化的平流扩散方程的一种时空可杂化不连续伽辽金方法。我们利用加权测试函数证明了在平流占优状态下离散化的稳定性,并推导了先验的时空误差估计。数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-time hybridizable discontinuous Galerkin method for advection-diffusion: the advection-dominated regime
We analyze a space-time hybridizable discontinuous Galerkin method to solve the time-dependent advection-diffusion equation. We prove stability of the discretization in the advection-dominated regime by using weighted test functions and derive a priori space-time error estimates. Numerical examples illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信