Izzatjon Allayarov, Vladimir R. Tuz, Antonio Calà Lesina, Andrey B. Evlyukhin
{"title":"具有各向异性极化和任意入射角的由元原子组成的超表面的解析模型","authors":"Izzatjon Allayarov, Vladimir R. Tuz, Antonio Calà Lesina, Andrey B. Evlyukhin","doi":"10.1103/physrevb.111.155438","DOIUrl":null,"url":null,"abstract":"The use of powerful numerical methods to study the optical properties of metasurfaces has led to an obvious need for the development of analytical models that provide meaningful physical analysis of the numerical results. In this paper, we present a general analytical approach to the study of electromagnetic resonances in metasurfaces consisting of meta-atoms with anisotropic dipole polarizabilities and irradiated with light under arbitrary angle of incidence. The presented approach allows us to clearly trace and explain features of coupling between electric and magnetic dipole moments in metasurfaces as well as identify the role of such coupling. For these purposes, the dependence of the dipole lattice sums on the angle of light incidence is also presented. Expressions for the specular transmission and reflection coefficients are presented with explicit inclusion of the incidence angles and the dipole moments of the particles in the array, which allows a clearer analysis of purely numerical results. The developed analytical method is tested to characterize the spectral resonances, including the generalized Brewster effect, of dielectric metasurfaces composed of rectangular silicon nanoprisms. In addition, we discuss the relationship and similarity between the results of coupled dipole and coupled dipole-quadrupole methods. Our analytical representation is an insightful and fast method for the characterization of collective resonances in metasurfaces for irradiation at an arbitrary angle of incidence. It could be especially useful for designing planar nanophotonic devices consisting of building blocks with noncanonical and complex shapes when considering their operation under special irradiation conditions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"68 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical model of metasurfaces comprising meta-atoms with anisotropic polarizabilities and for arbitrary incident angles\",\"authors\":\"Izzatjon Allayarov, Vladimir R. Tuz, Antonio Calà Lesina, Andrey B. Evlyukhin\",\"doi\":\"10.1103/physrevb.111.155438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of powerful numerical methods to study the optical properties of metasurfaces has led to an obvious need for the development of analytical models that provide meaningful physical analysis of the numerical results. In this paper, we present a general analytical approach to the study of electromagnetic resonances in metasurfaces consisting of meta-atoms with anisotropic dipole polarizabilities and irradiated with light under arbitrary angle of incidence. The presented approach allows us to clearly trace and explain features of coupling between electric and magnetic dipole moments in metasurfaces as well as identify the role of such coupling. For these purposes, the dependence of the dipole lattice sums on the angle of light incidence is also presented. Expressions for the specular transmission and reflection coefficients are presented with explicit inclusion of the incidence angles and the dipole moments of the particles in the array, which allows a clearer analysis of purely numerical results. The developed analytical method is tested to characterize the spectral resonances, including the generalized Brewster effect, of dielectric metasurfaces composed of rectangular silicon nanoprisms. In addition, we discuss the relationship and similarity between the results of coupled dipole and coupled dipole-quadrupole methods. Our analytical representation is an insightful and fast method for the characterization of collective resonances in metasurfaces for irradiation at an arbitrary angle of incidence. It could be especially useful for designing planar nanophotonic devices consisting of building blocks with noncanonical and complex shapes when considering their operation under special irradiation conditions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.155438\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.155438","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Analytical model of metasurfaces comprising meta-atoms with anisotropic polarizabilities and for arbitrary incident angles
The use of powerful numerical methods to study the optical properties of metasurfaces has led to an obvious need for the development of analytical models that provide meaningful physical analysis of the numerical results. In this paper, we present a general analytical approach to the study of electromagnetic resonances in metasurfaces consisting of meta-atoms with anisotropic dipole polarizabilities and irradiated with light under arbitrary angle of incidence. The presented approach allows us to clearly trace and explain features of coupling between electric and magnetic dipole moments in metasurfaces as well as identify the role of such coupling. For these purposes, the dependence of the dipole lattice sums on the angle of light incidence is also presented. Expressions for the specular transmission and reflection coefficients are presented with explicit inclusion of the incidence angles and the dipole moments of the particles in the array, which allows a clearer analysis of purely numerical results. The developed analytical method is tested to characterize the spectral resonances, including the generalized Brewster effect, of dielectric metasurfaces composed of rectangular silicon nanoprisms. In addition, we discuss the relationship and similarity between the results of coupled dipole and coupled dipole-quadrupole methods. Our analytical representation is an insightful and fast method for the characterization of collective resonances in metasurfaces for irradiation at an arbitrary angle of incidence. It could be especially useful for designing planar nanophotonic devices consisting of building blocks with noncanonical and complex shapes when considering their operation under special irradiation conditions. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter