抑制cgmp信号可以拯救视网膜神经节细胞免受axectomy诱导的变性

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Katia Ihadadene, Azdah Hamed A Fallatah, Yu Zhu, Arianna Tolone, François Paquet-Durand
{"title":"抑制cgmp信号可以拯救视网膜神经节细胞免受axectomy诱导的变性","authors":"Katia Ihadadene,&nbsp;Azdah Hamed A Fallatah,&nbsp;Yu Zhu,&nbsp;Arianna Tolone,&nbsp;François Paquet-Durand","doi":"10.1111/jnc.70072","DOIUrl":null,"url":null,"abstract":"<p>The axons of retinal ganglion cells (RGCs) form the optic nerve, which relays visual information to the brain. RGC degeneration is the root cause of a variety of blinding diseases linked to optic nerve damage, including glaucoma, the second leading cause of blindness worldwide. The underlying cellular mechanisms of RGC degeneration are largely unclear; yet, they have been connected to excessive production of the signalling molecule nitric oxide (NO) by nitric oxide synthase (NOS). NO activates soluble guanylate cyclase (sGC), which subsequently produces the second messenger cyclic guanosine monophosphate (cGMP). This, in turn, activates protein kinase G (PKG), which can phosphorylate downstream protein targets. To study the role of NO/cGMP/PKG signalling in RGC degeneration, we used organotypic retinal explant cultures in which the optic nerve had been severed. We assessed the activity of NOS, RGC death and survival at different times after optic nerve transection. While NOS activity was high right after optic nerve transection, significant RGC loss occurred with a 24–48-h delay. We then treated retinal explants with inhibitors selectively targeting either NOS, sGC, PKG, or Kv1.3 and Kv1.6 voltage-gated potassium channels. While all four treatments reduced RGC death, the PKG inhibitor CN238 and the Kv-channel blocker Margatoxin (MrgX) showed the most pronounced rescue effects. Our results confirm an involvement of NO/cGMP/PKG signalling in RGC degeneration, highlight the potential of PKG and Kv1-channel targeting drugs for treatment development, and further suggest organotypic retinal explant cultures as a useful model for investigations into optic nerve damage.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70072","citationCount":"0","resultStr":"{\"title\":\"Inhibition of cGMP-Signalling Rescues Retinal Ganglion Cells From Axotomy-Induced Degeneration\",\"authors\":\"Katia Ihadadene,&nbsp;Azdah Hamed A Fallatah,&nbsp;Yu Zhu,&nbsp;Arianna Tolone,&nbsp;François Paquet-Durand\",\"doi\":\"10.1111/jnc.70072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The axons of retinal ganglion cells (RGCs) form the optic nerve, which relays visual information to the brain. RGC degeneration is the root cause of a variety of blinding diseases linked to optic nerve damage, including glaucoma, the second leading cause of blindness worldwide. The underlying cellular mechanisms of RGC degeneration are largely unclear; yet, they have been connected to excessive production of the signalling molecule nitric oxide (NO) by nitric oxide synthase (NOS). NO activates soluble guanylate cyclase (sGC), which subsequently produces the second messenger cyclic guanosine monophosphate (cGMP). This, in turn, activates protein kinase G (PKG), which can phosphorylate downstream protein targets. To study the role of NO/cGMP/PKG signalling in RGC degeneration, we used organotypic retinal explant cultures in which the optic nerve had been severed. We assessed the activity of NOS, RGC death and survival at different times after optic nerve transection. While NOS activity was high right after optic nerve transection, significant RGC loss occurred with a 24–48-h delay. We then treated retinal explants with inhibitors selectively targeting either NOS, sGC, PKG, or Kv1.3 and Kv1.6 voltage-gated potassium channels. While all four treatments reduced RGC death, the PKG inhibitor CN238 and the Kv-channel blocker Margatoxin (MrgX) showed the most pronounced rescue effects. Our results confirm an involvement of NO/cGMP/PKG signalling in RGC degeneration, highlight the potential of PKG and Kv1-channel targeting drugs for treatment development, and further suggest organotypic retinal explant cultures as a useful model for investigations into optic nerve damage.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\"169 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70072\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70072","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

视网膜神经节细胞(RGCs)的轴突形成视神经,将视觉信息传递给大脑。RGC变性是与视神经损伤相关的各种致盲疾病的根本原因,包括青光眼,这是全球致盲的第二大原因。RGC退化的潜在细胞机制在很大程度上尚不清楚;然而,它们与一氧化氮合酶(NOS)过量产生信号分子一氧化氮(NO)有关。NO激活可溶性鸟苷环化酶(sGC),该酶随后产生第二信使环鸟苷单磷酸(cGMP)。这进而激活蛋白激酶G (PKG),使下游蛋白靶点磷酸化。为了研究NO/cGMP/PKG信号在RGC变性中的作用,我们使用了视神经被切断的器官型视网膜外植体培养。观察视神经横断后不同时间NOS活性、RGC死亡及存活情况。视神经横断后NOS活性高,RGC明显丢失,延迟24 - 48小时。然后,我们用选择性靶向NOS、sGC、PKG或Kv1.3和Kv1.6电压门控钾通道的抑制剂处理视网膜外植体。虽然所有四种治疗方法都降低了RGC死亡率,但PKG抑制剂CN238和kv通道阻滞剂Margatoxin (MrgX)显示出最明显的拯救作用。我们的研究结果证实了NO/cGMP/PKG信号参与了RGC变性,强调了PKG和kv1通道靶向药物在治疗开发中的潜力,并进一步表明器官型视网膜外植体培养作为视神经损伤研究的有用模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inhibition of cGMP-Signalling Rescues Retinal Ganglion Cells From Axotomy-Induced Degeneration

Inhibition of cGMP-Signalling Rescues Retinal Ganglion Cells From Axotomy-Induced Degeneration

The axons of retinal ganglion cells (RGCs) form the optic nerve, which relays visual information to the brain. RGC degeneration is the root cause of a variety of blinding diseases linked to optic nerve damage, including glaucoma, the second leading cause of blindness worldwide. The underlying cellular mechanisms of RGC degeneration are largely unclear; yet, they have been connected to excessive production of the signalling molecule nitric oxide (NO) by nitric oxide synthase (NOS). NO activates soluble guanylate cyclase (sGC), which subsequently produces the second messenger cyclic guanosine monophosphate (cGMP). This, in turn, activates protein kinase G (PKG), which can phosphorylate downstream protein targets. To study the role of NO/cGMP/PKG signalling in RGC degeneration, we used organotypic retinal explant cultures in which the optic nerve had been severed. We assessed the activity of NOS, RGC death and survival at different times after optic nerve transection. While NOS activity was high right after optic nerve transection, significant RGC loss occurred with a 24–48-h delay. We then treated retinal explants with inhibitors selectively targeting either NOS, sGC, PKG, or Kv1.3 and Kv1.6 voltage-gated potassium channels. While all four treatments reduced RGC death, the PKG inhibitor CN238 and the Kv-channel blocker Margatoxin (MrgX) showed the most pronounced rescue effects. Our results confirm an involvement of NO/cGMP/PKG signalling in RGC degeneration, highlight the potential of PKG and Kv1-channel targeting drugs for treatment development, and further suggest organotypic retinal explant cultures as a useful model for investigations into optic nerve damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信