{"title":"槲皮素/芦丁负载聚乙二醇纳米颗粒的药物控释及生物活性比较研究","authors":"Renuka Mani, Swethaa Viswaresh Babu, Nishanth Murugesan, Ramachandhiran Duraisamy, Palvannan Thayumanavan","doi":"10.1002/jbt.70269","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Flavonoids are natural polyphenolic compounds that primarily possess antioxidant properties and play a significant role in opposing various diseases. Current chemotherapeutic approaches are largely ineffective, thus calling for the development of alternative strategies to combat this disease. In this regard, numerous studies have reported the anticancer effect of flavonoids in different types of cancer. To enhance its therapeutic value, polymeric nanoparticles (PEG NPs) represent an ideal delivery system. Further, surface modification of NPs with PEG holds tremendous potential for improving the bioavailability and circulation time of native drugs in the blood. The present study aimed to develop Quercetin/Rutin-loaded PEG polymeric NPs (Qu-PEG/Ru-PEG NPs) with enhanced encapsulation efficiency and sustained drug release. The synthesized Qu-PEG NPs & Ru-PEG NPs were characterized by UV-Vis Spectroscopy, FTIR spectrum, NMR, and XRD and SEM analysis. In-vitro drug release study exhibited a cumulative release of Quercetin & rutin for 24 h at pH 7.4. Further, the polymeric nano-formulations of Quercetin & Rutin showed enhanced antioxidant activity, leading to defense against oxidative stress. In-vitro cellular studies demonstrated that Qu-PEG NPs and Ru-PEG NPs significantly inhibit KB cell proliferation compared to free drugs alone. The current study also showed that Qu-PEG NPs & Ru-PEG NPs enhance intracellular ROS generation compared to the drug alone. Hence, our research findings revealed that successful encapsulation of Quercetin & Rutin in PEG NPs targets the tumor microenvironment and enhances the efficacy of drugs. Based on these preliminary results, flavonoid-loaded polymeric-based NPs might be potential therapeutic molecules against cancer in the future.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Quercetin/Rutin Loaded PEG Polymeric Nanoparticles: Controlled Drug Release and Its Biological Activity\",\"authors\":\"Renuka Mani, Swethaa Viswaresh Babu, Nishanth Murugesan, Ramachandhiran Duraisamy, Palvannan Thayumanavan\",\"doi\":\"10.1002/jbt.70269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Flavonoids are natural polyphenolic compounds that primarily possess antioxidant properties and play a significant role in opposing various diseases. Current chemotherapeutic approaches are largely ineffective, thus calling for the development of alternative strategies to combat this disease. In this regard, numerous studies have reported the anticancer effect of flavonoids in different types of cancer. To enhance its therapeutic value, polymeric nanoparticles (PEG NPs) represent an ideal delivery system. Further, surface modification of NPs with PEG holds tremendous potential for improving the bioavailability and circulation time of native drugs in the blood. The present study aimed to develop Quercetin/Rutin-loaded PEG polymeric NPs (Qu-PEG/Ru-PEG NPs) with enhanced encapsulation efficiency and sustained drug release. The synthesized Qu-PEG NPs & Ru-PEG NPs were characterized by UV-Vis Spectroscopy, FTIR spectrum, NMR, and XRD and SEM analysis. In-vitro drug release study exhibited a cumulative release of Quercetin & rutin for 24 h at pH 7.4. Further, the polymeric nano-formulations of Quercetin & Rutin showed enhanced antioxidant activity, leading to defense against oxidative stress. In-vitro cellular studies demonstrated that Qu-PEG NPs and Ru-PEG NPs significantly inhibit KB cell proliferation compared to free drugs alone. The current study also showed that Qu-PEG NPs & Ru-PEG NPs enhance intracellular ROS generation compared to the drug alone. Hence, our research findings revealed that successful encapsulation of Quercetin & Rutin in PEG NPs targets the tumor microenvironment and enhances the efficacy of drugs. Based on these preliminary results, flavonoid-loaded polymeric-based NPs might be potential therapeutic molecules against cancer in the future.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70269\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70269","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A Comparative Study of Quercetin/Rutin Loaded PEG Polymeric Nanoparticles: Controlled Drug Release and Its Biological Activity
Flavonoids are natural polyphenolic compounds that primarily possess antioxidant properties and play a significant role in opposing various diseases. Current chemotherapeutic approaches are largely ineffective, thus calling for the development of alternative strategies to combat this disease. In this regard, numerous studies have reported the anticancer effect of flavonoids in different types of cancer. To enhance its therapeutic value, polymeric nanoparticles (PEG NPs) represent an ideal delivery system. Further, surface modification of NPs with PEG holds tremendous potential for improving the bioavailability and circulation time of native drugs in the blood. The present study aimed to develop Quercetin/Rutin-loaded PEG polymeric NPs (Qu-PEG/Ru-PEG NPs) with enhanced encapsulation efficiency and sustained drug release. The synthesized Qu-PEG NPs & Ru-PEG NPs were characterized by UV-Vis Spectroscopy, FTIR spectrum, NMR, and XRD and SEM analysis. In-vitro drug release study exhibited a cumulative release of Quercetin & rutin for 24 h at pH 7.4. Further, the polymeric nano-formulations of Quercetin & Rutin showed enhanced antioxidant activity, leading to defense against oxidative stress. In-vitro cellular studies demonstrated that Qu-PEG NPs and Ru-PEG NPs significantly inhibit KB cell proliferation compared to free drugs alone. The current study also showed that Qu-PEG NPs & Ru-PEG NPs enhance intracellular ROS generation compared to the drug alone. Hence, our research findings revealed that successful encapsulation of Quercetin & Rutin in PEG NPs targets the tumor microenvironment and enhances the efficacy of drugs. Based on these preliminary results, flavonoid-loaded polymeric-based NPs might be potential therapeutic molecules against cancer in the future.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.