基于视觉变形器的生成盒引导交互式图像分割

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shiyin Zhang, Yafei Dong, Shuang Qiu
{"title":"基于视觉变形器的生成盒引导交互式图像分割","authors":"Shiyin Zhang,&nbsp;Yafei Dong,&nbsp;Shuang Qiu","doi":"10.1049/cvi2.70019","DOIUrl":null,"url":null,"abstract":"<p>Existing click-based interactive image segmentation methods typically initiate object extraction with the first click and iteratively refine the coarse segmentation through subsequent interactions. Unlike box-based methods, click-based approaches mitigate ambiguity when multiple targets are present within a single bounding box, but suffer from a lack of precise location and outline information. Inspired by instance segmentation, the authors propose a Generated-bbox Guided method that provides location and outline information using an automatically generated bounding box, rather than a manually labelled one, minimising the need for extensive user interaction. Building on the success of vision transformers, the authors adopt them as the network architecture to enhance model's performance. A click-based interactive image segmentation network named the Generated-bbox Guided Coarse-to-Fine Network (GCFN) was proposed. GCFN is a two-stage cascade network comprising two sub-networks: Coarsenet and Finenet. A transformer-based Box Detector was introduced to generate an initial bounding box from a inside click, that can provide location and outline information. Additionally, two feature enhancement modules guided by foreground and background information: the Foreground-Background Feature Enhancement Module (FFEM) and the Pixel Enhancement Module (PEM) were designed. The authors evaluate the GCFN method on five popular benchmark datasets and demonstrate the generalisation capability on three medical image datasets.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70019","citationCount":"0","resultStr":"{\"title\":\"The Generated-bbox Guided Interactive Image Segmentation With Vision Transformers\",\"authors\":\"Shiyin Zhang,&nbsp;Yafei Dong,&nbsp;Shuang Qiu\",\"doi\":\"10.1049/cvi2.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing click-based interactive image segmentation methods typically initiate object extraction with the first click and iteratively refine the coarse segmentation through subsequent interactions. Unlike box-based methods, click-based approaches mitigate ambiguity when multiple targets are present within a single bounding box, but suffer from a lack of precise location and outline information. Inspired by instance segmentation, the authors propose a Generated-bbox Guided method that provides location and outline information using an automatically generated bounding box, rather than a manually labelled one, minimising the need for extensive user interaction. Building on the success of vision transformers, the authors adopt them as the network architecture to enhance model's performance. A click-based interactive image segmentation network named the Generated-bbox Guided Coarse-to-Fine Network (GCFN) was proposed. GCFN is a two-stage cascade network comprising two sub-networks: Coarsenet and Finenet. A transformer-based Box Detector was introduced to generate an initial bounding box from a inside click, that can provide location and outline information. Additionally, two feature enhancement modules guided by foreground and background information: the Foreground-Background Feature Enhancement Module (FFEM) and the Pixel Enhancement Module (PEM) were designed. The authors evaluate the GCFN method on five popular benchmark datasets and demonstrate the generalisation capability on three medical image datasets.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70019\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于点击的交互式图像分割方法通常通过第一次点击来启动目标提取,并通过后续的交互迭代来完善粗略分割。与基于框的方法不同,基于点击的方法可以在单个边界框内出现多个目标时缓解模糊性,但却缺乏精确的位置和轮廓信息。受实例分割的启发,作者提出了一种 "生成框引导 "方法,该方法使用自动生成的边界框提供位置和轮廓信息,而不是手动标注的边界框,从而最大限度地减少了大量用户交互的需要。基于视觉转换器的成功经验,作者采用视觉转换器作为网络架构,以提高模型的性能。作者提出了一种基于点击的交互式图像分割网络,名为 "生成框引导的粗到细网络(GCFN)"。GCFN 是一个两级级联网络,由两个子网络组成:粗网络和细网络。GCFN 引入了一个基于变压器的框检测器,用于从内部点击生成一个初始边界框,该边界框可提供位置和轮廓信息。此外,还设计了两个由前景和背景信息引导的特征增强模块:前景-背景特征增强模块(FFEM)和像素增强模块(PEM)。作者在五个常用基准数据集上对 GCFN 方法进行了评估,并在三个医学图像数据集上展示了该方法的通用能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Generated-bbox Guided Interactive Image Segmentation With Vision Transformers

The Generated-bbox Guided Interactive Image Segmentation With Vision Transformers

Existing click-based interactive image segmentation methods typically initiate object extraction with the first click and iteratively refine the coarse segmentation through subsequent interactions. Unlike box-based methods, click-based approaches mitigate ambiguity when multiple targets are present within a single bounding box, but suffer from a lack of precise location and outline information. Inspired by instance segmentation, the authors propose a Generated-bbox Guided method that provides location and outline information using an automatically generated bounding box, rather than a manually labelled one, minimising the need for extensive user interaction. Building on the success of vision transformers, the authors adopt them as the network architecture to enhance model's performance. A click-based interactive image segmentation network named the Generated-bbox Guided Coarse-to-Fine Network (GCFN) was proposed. GCFN is a two-stage cascade network comprising two sub-networks: Coarsenet and Finenet. A transformer-based Box Detector was introduced to generate an initial bounding box from a inside click, that can provide location and outline information. Additionally, two feature enhancement modules guided by foreground and background information: the Foreground-Background Feature Enhancement Module (FFEM) and the Pixel Enhancement Module (PEM) were designed. The authors evaluate the GCFN method on five popular benchmark datasets and demonstrate the generalisation capability on three medical image datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信