{"title":"基于视觉变形器的生成盒引导交互式图像分割","authors":"Shiyin Zhang, Yafei Dong, Shuang Qiu","doi":"10.1049/cvi2.70019","DOIUrl":null,"url":null,"abstract":"<p>Existing click-based interactive image segmentation methods typically initiate object extraction with the first click and iteratively refine the coarse segmentation through subsequent interactions. Unlike box-based methods, click-based approaches mitigate ambiguity when multiple targets are present within a single bounding box, but suffer from a lack of precise location and outline information. Inspired by instance segmentation, the authors propose a Generated-bbox Guided method that provides location and outline information using an automatically generated bounding box, rather than a manually labelled one, minimising the need for extensive user interaction. Building on the success of vision transformers, the authors adopt them as the network architecture to enhance model's performance. A click-based interactive image segmentation network named the Generated-bbox Guided Coarse-to-Fine Network (GCFN) was proposed. GCFN is a two-stage cascade network comprising two sub-networks: Coarsenet and Finenet. A transformer-based Box Detector was introduced to generate an initial bounding box from a inside click, that can provide location and outline information. Additionally, two feature enhancement modules guided by foreground and background information: the Foreground-Background Feature Enhancement Module (FFEM) and the Pixel Enhancement Module (PEM) were designed. The authors evaluate the GCFN method on five popular benchmark datasets and demonstrate the generalisation capability on three medical image datasets.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70019","citationCount":"0","resultStr":"{\"title\":\"The Generated-bbox Guided Interactive Image Segmentation With Vision Transformers\",\"authors\":\"Shiyin Zhang, Yafei Dong, Shuang Qiu\",\"doi\":\"10.1049/cvi2.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing click-based interactive image segmentation methods typically initiate object extraction with the first click and iteratively refine the coarse segmentation through subsequent interactions. Unlike box-based methods, click-based approaches mitigate ambiguity when multiple targets are present within a single bounding box, but suffer from a lack of precise location and outline information. Inspired by instance segmentation, the authors propose a Generated-bbox Guided method that provides location and outline information using an automatically generated bounding box, rather than a manually labelled one, minimising the need for extensive user interaction. Building on the success of vision transformers, the authors adopt them as the network architecture to enhance model's performance. A click-based interactive image segmentation network named the Generated-bbox Guided Coarse-to-Fine Network (GCFN) was proposed. GCFN is a two-stage cascade network comprising two sub-networks: Coarsenet and Finenet. A transformer-based Box Detector was introduced to generate an initial bounding box from a inside click, that can provide location and outline information. Additionally, two feature enhancement modules guided by foreground and background information: the Foreground-Background Feature Enhancement Module (FFEM) and the Pixel Enhancement Module (PEM) were designed. The authors evaluate the GCFN method on five popular benchmark datasets and demonstrate the generalisation capability on three medical image datasets.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70019\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The Generated-bbox Guided Interactive Image Segmentation With Vision Transformers
Existing click-based interactive image segmentation methods typically initiate object extraction with the first click and iteratively refine the coarse segmentation through subsequent interactions. Unlike box-based methods, click-based approaches mitigate ambiguity when multiple targets are present within a single bounding box, but suffer from a lack of precise location and outline information. Inspired by instance segmentation, the authors propose a Generated-bbox Guided method that provides location and outline information using an automatically generated bounding box, rather than a manually labelled one, minimising the need for extensive user interaction. Building on the success of vision transformers, the authors adopt them as the network architecture to enhance model's performance. A click-based interactive image segmentation network named the Generated-bbox Guided Coarse-to-Fine Network (GCFN) was proposed. GCFN is a two-stage cascade network comprising two sub-networks: Coarsenet and Finenet. A transformer-based Box Detector was introduced to generate an initial bounding box from a inside click, that can provide location and outline information. Additionally, two feature enhancement modules guided by foreground and background information: the Foreground-Background Feature Enhancement Module (FFEM) and the Pixel Enhancement Module (PEM) were designed. The authors evaluate the GCFN method on five popular benchmark datasets and demonstrate the generalisation capability on three medical image datasets.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf