Abdulkarim Hassan Ibrahim, Mohammed Alshahrani, Suliman Al-Homidan
{"title":"一类超越单调性的松弛惯性无导数投影法及其应用","authors":"Abdulkarim Hassan Ibrahim, Mohammed Alshahrani, Suliman Al-Homidan","doi":"10.1007/s40065-024-00491-y","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances have introduced derivative-free projection methods incorporating a relaxed-inertial technique to solve large-scale systems of nonlinear equations (LSoNE). These methods are often studied under restrictive assumptions such as monotonicity and Lipschitz continuity assumptions. In this paper, we propose a new class of derivative-free projection method with a relaxed inertial technique for solving LSoNE. Unlike existing approaches that rely on monotonicity and Lipschitz continuity assumptions, our method extends beyond these limitations, broadening the applicability of projection methods to more general problem classes. This enhances both the theoretical framework and the practical efficiency in large-scale applications. Moreover, we establish global convergence without the need for a summability condition on the inertial extrapolation step length. To demonstrate the effectiveness of the method, we present numerical experiments to solve LSoNE and regularized decentralized logistic regression, a key problem in machine learning applications.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"14 1","pages":"53 - 84"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of relaxed-inertial derivative-free projection method beyond monotonicity with application\",\"authors\":\"Abdulkarim Hassan Ibrahim, Mohammed Alshahrani, Suliman Al-Homidan\",\"doi\":\"10.1007/s40065-024-00491-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advances have introduced derivative-free projection methods incorporating a relaxed-inertial technique to solve large-scale systems of nonlinear equations (LSoNE). These methods are often studied under restrictive assumptions such as monotonicity and Lipschitz continuity assumptions. In this paper, we propose a new class of derivative-free projection method with a relaxed inertial technique for solving LSoNE. Unlike existing approaches that rely on monotonicity and Lipschitz continuity assumptions, our method extends beyond these limitations, broadening the applicability of projection methods to more general problem classes. This enhances both the theoretical framework and the practical efficiency in large-scale applications. Moreover, we establish global convergence without the need for a summability condition on the inertial extrapolation step length. To demonstrate the effectiveness of the method, we present numerical experiments to solve LSoNE and regularized decentralized logistic regression, a key problem in machine learning applications.</p></div>\",\"PeriodicalId\":54135,\"journal\":{\"name\":\"Arabian Journal of Mathematics\",\"volume\":\"14 1\",\"pages\":\"53 - 84\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40065-024-00491-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-024-00491-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A class of relaxed-inertial derivative-free projection method beyond monotonicity with application
Recent advances have introduced derivative-free projection methods incorporating a relaxed-inertial technique to solve large-scale systems of nonlinear equations (LSoNE). These methods are often studied under restrictive assumptions such as monotonicity and Lipschitz continuity assumptions. In this paper, we propose a new class of derivative-free projection method with a relaxed inertial technique for solving LSoNE. Unlike existing approaches that rely on monotonicity and Lipschitz continuity assumptions, our method extends beyond these limitations, broadening the applicability of projection methods to more general problem classes. This enhances both the theoretical framework and the practical efficiency in large-scale applications. Moreover, we establish global convergence without the need for a summability condition on the inertial extrapolation step length. To demonstrate the effectiveness of the method, we present numerical experiments to solve LSoNE and regularized decentralized logistic regression, a key problem in machine learning applications.
期刊介绍:
The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics.
Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.