铝合金切屑重熔工艺的最新进展:综述

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Xin Chen, Mariem Ben Saada, Bruno Lavisse, Amine Ammar
{"title":"铝合金切屑重熔工艺的最新进展:综述","authors":"Xin Chen,&nbsp;Mariem Ben Saada,&nbsp;Bruno Lavisse,&nbsp;Amine Ammar","doi":"10.1007/s12289-025-01904-9","DOIUrl":null,"url":null,"abstract":"<div><p>This critical review examines advances in preprocessing and remelting processes for aluminium alloy chip recycling, emphasizing pre-treatment and remelting techniques that improve both resource recovery and material quality. Pre-treatment strategies, particularly cleaning methods and compaction are critically evaluated. Various cleaning methods, including centrifugation, ultrasonic solvent washing, extraction, and distillation are compared based on their ability to remove residual cutting fluids. Cold compaction, which augments chip density to approximately 2.5 g/cm³, significantly curtails oxidation losses and enhances metal recovery. During remelting, NaCl-KCl-based fluxes with limited fluoride additions (e.g., 3–7 wt% Na₃AlF₆) disrupt oxide networks but require careful dosage control to minimize furnace corrosion and environmental hazards. Moreover, mechanical stirring combined with suitable melting temperatures reduces porosity while enhancing melt purity. Future research should prioritize the development of low-energy cleaning methods, flux composition optimization, and scalable production techniques to further advance sustainable aluminium recycling.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-025-01904-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances in the remelting process for recycling aluminium alloy chips: a critical review\",\"authors\":\"Xin Chen,&nbsp;Mariem Ben Saada,&nbsp;Bruno Lavisse,&nbsp;Amine Ammar\",\"doi\":\"10.1007/s12289-025-01904-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This critical review examines advances in preprocessing and remelting processes for aluminium alloy chip recycling, emphasizing pre-treatment and remelting techniques that improve both resource recovery and material quality. Pre-treatment strategies, particularly cleaning methods and compaction are critically evaluated. Various cleaning methods, including centrifugation, ultrasonic solvent washing, extraction, and distillation are compared based on their ability to remove residual cutting fluids. Cold compaction, which augments chip density to approximately 2.5 g/cm³, significantly curtails oxidation losses and enhances metal recovery. During remelting, NaCl-KCl-based fluxes with limited fluoride additions (e.g., 3–7 wt% Na₃AlF₆) disrupt oxide networks but require careful dosage control to minimize furnace corrosion and environmental hazards. Moreover, mechanical stirring combined with suitable melting temperatures reduces porosity while enhancing melt purity. Future research should prioritize the development of low-energy cleaning methods, flux composition optimization, and scalable production techniques to further advance sustainable aluminium recycling.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12289-025-01904-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01904-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01904-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

这篇重要的综述审查了铝合金切屑回收的预处理和重熔工艺的进展,强调了提高资源回收率和材料质量的预处理和重熔技术。预处理策略,特别是清洁方法和压实是严格评估。各种清洗方法,包括离心、超声波溶剂洗涤、萃取和蒸馏,根据它们去除残余切削液的能力进行比较。冷压可将芯片密度提高至约2.5 g/cm³,显著减少氧化损失,提高金属回收率。在重熔过程中,添加了有限氟化物的nacl - kcl基助熔剂(例如,3-7 wt%的Na₃AlF₆)会破坏氧化物网络,但需要仔细控制剂量,以尽量减少炉腐蚀和环境危害。此外,机械搅拌结合合适的熔化温度减少孔隙率,同时提高熔体纯度。未来的研究应优先发展低能耗清洁方法、助熔剂成分优化和规模化生产技术,以进一步推进铝的可持续回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in the remelting process for recycling aluminium alloy chips: a critical review

This critical review examines advances in preprocessing and remelting processes for aluminium alloy chip recycling, emphasizing pre-treatment and remelting techniques that improve both resource recovery and material quality. Pre-treatment strategies, particularly cleaning methods and compaction are critically evaluated. Various cleaning methods, including centrifugation, ultrasonic solvent washing, extraction, and distillation are compared based on their ability to remove residual cutting fluids. Cold compaction, which augments chip density to approximately 2.5 g/cm³, significantly curtails oxidation losses and enhances metal recovery. During remelting, NaCl-KCl-based fluxes with limited fluoride additions (e.g., 3–7 wt% Na₃AlF₆) disrupt oxide networks but require careful dosage control to minimize furnace corrosion and environmental hazards. Moreover, mechanical stirring combined with suitable melting temperatures reduces porosity while enhancing melt purity. Future research should prioritize the development of low-energy cleaning methods, flux composition optimization, and scalable production techniques to further advance sustainable aluminium recycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信