时滞分数阶模型的有限时间稳定性和可控性研究

IF 0.9 Q2 MATHEMATICS
P. K. Lakshmi Priya, K. Kaliraj
{"title":"时滞分数阶模型的有限时间稳定性和可控性研究","authors":"P. K. Lakshmi Priya,&nbsp;K. Kaliraj","doi":"10.1007/s40065-025-00492-5","DOIUrl":null,"url":null,"abstract":"<div><p>The mainspring of this analytical study is to implement the idea of delayed argument cosine and sine conformable matrices to interpret the stability bounds of conformable type fractional operator over finite time period using modified integral form of Gronwall’s inequality. Further, we establish the conformable Grammian matrices in-terms of sine function to analyze the controllability results. The main inception is to first consider the linear controllability result of our defined system and to a greater extent, fixed point techniques along with the properties of Bochner-integral and inner product spaces are implemented to verify the controllability results of the nonlinear system. The theoretical study is graphically visualized using matlab software.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"14 1","pages":"155 - 170"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the finite time stability and controllability of time delay fractional model\",\"authors\":\"P. K. Lakshmi Priya,&nbsp;K. Kaliraj\",\"doi\":\"10.1007/s40065-025-00492-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mainspring of this analytical study is to implement the idea of delayed argument cosine and sine conformable matrices to interpret the stability bounds of conformable type fractional operator over finite time period using modified integral form of Gronwall’s inequality. Further, we establish the conformable Grammian matrices in-terms of sine function to analyze the controllability results. The main inception is to first consider the linear controllability result of our defined system and to a greater extent, fixed point techniques along with the properties of Bochner-integral and inner product spaces are implemented to verify the controllability results of the nonlinear system. The theoretical study is graphically visualized using matlab software.</p></div>\",\"PeriodicalId\":54135,\"journal\":{\"name\":\"Arabian Journal of Mathematics\",\"volume\":\"14 1\",\"pages\":\"155 - 170\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40065-025-00492-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-025-00492-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本分析研究的主要内容是利用Gronwall不等式的修正积分形式,利用延迟参数余弦和正弦可调矩阵的思想来解释可调型分数算子在有限时间内的稳定性界。在此基础上,建立了正弦函数的适形Grammian矩阵,分析了其可控性结果。主要的出发点是首先考虑我们所定义的系统的线性可控性结果,在更大程度上,利用不动点技术以及bochner积分和内积空间的性质来验证非线性系统的可控性结果。利用matlab软件对理论研究进行了图形化可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on the finite time stability and controllability of time delay fractional model

The mainspring of this analytical study is to implement the idea of delayed argument cosine and sine conformable matrices to interpret the stability bounds of conformable type fractional operator over finite time period using modified integral form of Gronwall’s inequality. Further, we establish the conformable Grammian matrices in-terms of sine function to analyze the controllability results. The main inception is to first consider the linear controllability result of our defined system and to a greater extent, fixed point techniques along with the properties of Bochner-integral and inner product spaces are implemented to verify the controllability results of the nonlinear system. The theoretical study is graphically visualized using matlab software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
48
审稿时长
13 weeks
期刊介绍: The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics. Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信