基于Inception模块的大地电磁三维反演轻量级网络

Zhiliang Zhan;Weiwei Ling;Kejia Pan;Chaofei Liu;Jiajing Zhang;Yuan Sun;Jingtian Tang;Wenbo Xiao
{"title":"基于Inception模块的大地电磁三维反演轻量级网络","authors":"Zhiliang Zhan;Weiwei Ling;Kejia Pan;Chaofei Liu;Jiajing Zhang;Yuan Sun;Jingtian Tang;Wenbo Xiao","doi":"10.1109/LGRS.2025.3558938","DOIUrl":null,"url":null,"abstract":"In the field of geophysical exploration, the application of deep learning techniques has garnered significant attention. This letter proposes a new deep learning model for 3-D magnetotelluric inversion, named 3DInception-U. In this model, we integrate the inception module into the network architecture and combine the concatenation layer with a U-Net structure. This model has two advantages: First, the inception module, along with the deep concatenation layer, enhances the network’s capability for feature extraction and representation, and second, the skip connections in the U-Net facilitate information propagation, enabling the design of a network with fewer parameters but better performance. We produced 10 000 3-D complex samples for training by Gaussian random fields (GRFs) and compared 3DInception-U with existing 3-D magnetotelluric (MT) inversion models and applied it to real geological interpretation. The results demonstrate that this network architecture achieves good inversion accuracy and robustness.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3DInception-U: Lightweight Network for 3-D Magnetotelluric Inversion Based on Inception Module\",\"authors\":\"Zhiliang Zhan;Weiwei Ling;Kejia Pan;Chaofei Liu;Jiajing Zhang;Yuan Sun;Jingtian Tang;Wenbo Xiao\",\"doi\":\"10.1109/LGRS.2025.3558938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of geophysical exploration, the application of deep learning techniques has garnered significant attention. This letter proposes a new deep learning model for 3-D magnetotelluric inversion, named 3DInception-U. In this model, we integrate the inception module into the network architecture and combine the concatenation layer with a U-Net structure. This model has two advantages: First, the inception module, along with the deep concatenation layer, enhances the network’s capability for feature extraction and representation, and second, the skip connections in the U-Net facilitate information propagation, enabling the design of a network with fewer parameters but better performance. We produced 10 000 3-D complex samples for training by Gaussian random fields (GRFs) and compared 3DInception-U with existing 3-D magnetotelluric (MT) inversion models and applied it to real geological interpretation. The results demonstrate that this network architecture achieves good inversion accuracy and robustness.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10955415/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10955415/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在地球物理勘探领域,深度学习技术的应用受到了广泛关注。本文提出了一种新的三维大地电磁反演深度学习模型,命名为3DInception-U。在该模型中,我们将初始模块集成到网络体系结构中,并将连接层与U-Net结构相结合。该模型有两个优点:首先,初始模块和深度连接层增强了网络的特征提取和表示能力;其次,U-Net中的跳过连接便于信息传播,使设计的网络参数更少,性能更好。我们制作了10000个三维复杂样本,利用高斯随机场(GRFs)进行训练,并将3dincepu - u与现有的三维大地电磁(MT)反演模型进行了比较,并将其应用于实际地质解释。结果表明,该网络结构具有良好的反演精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3DInception-U: Lightweight Network for 3-D Magnetotelluric Inversion Based on Inception Module
In the field of geophysical exploration, the application of deep learning techniques has garnered significant attention. This letter proposes a new deep learning model for 3-D magnetotelluric inversion, named 3DInception-U. In this model, we integrate the inception module into the network architecture and combine the concatenation layer with a U-Net structure. This model has two advantages: First, the inception module, along with the deep concatenation layer, enhances the network’s capability for feature extraction and representation, and second, the skip connections in the U-Net facilitate information propagation, enabling the design of a network with fewer parameters but better performance. We produced 10 000 3-D complex samples for training by Gaussian random fields (GRFs) and compared 3DInception-U with existing 3-D magnetotelluric (MT) inversion models and applied it to real geological interpretation. The results demonstrate that this network architecture achieves good inversion accuracy and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信