不同环爆介质下伽马暴初始洛伦兹因子的约束

IF 10.2 4区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Sheng-Jin Sun , Shuang-Xi Yi , Yuan-Chuan Zou , Yu-Peng Yang , Ying Qin , Qing-Wen Tang , Fa-Yin Wang
{"title":"不同环爆介质下伽马暴初始洛伦兹因子的约束","authors":"Sheng-Jin Sun ,&nbsp;Shuang-Xi Yi ,&nbsp;Yuan-Chuan Zou ,&nbsp;Yu-Peng Yang ,&nbsp;Ying Qin ,&nbsp;Qing-Wen Tang ,&nbsp;Fa-Yin Wang","doi":"10.1016/j.jheap.2025.100390","DOIUrl":null,"url":null,"abstract":"<div><div>The initial Lorentz factor (<span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mtext>0</mtext></mrow></msub></math></span>) plays a crucial role in uncovering the physical characteristics of gamma-ray bursts (GRBs). Previous studies have indicated that the ambient medium density index <em>k</em> for GRBs falls in the range of 0 - 2, rather than exactly equal to 0 (homogeneous interstellar ambient) or 2 (typical stellar wind). In this work, we aim to constrain the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of GRBs considering their distinct circumburst medium. We select a total of 33 GRBs for our analysis, comprising 7 X-ray GRBs and 26 optical GRBs. Subsequently, by utilizing the deceleration time of fireball <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, we derive the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for the 33 GRBs assuming the radiation efficiency of <em>η</em>= 0.2. The inferred initial Lorentz factor was found to be from 50 to 500, consistent with previous studies. We then investigate the correlation between the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the isotropic energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span> (as well as the mean isotropic luminosity <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span>), finding very tight correlations between them, i.e., <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>52</mn></mrow><mrow><mn>0.24</mn></mrow></msubsup></math></span> (<span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi><mo>.</mo><mn>49</mn></mrow></mrow><mrow><mn>0.20</mn></mrow></msubsup></math></span>) with <em>η</em>=0.2. Additionally, we verify the correlation among <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the isotropic energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span> (or <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span>) and the peak energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow></msub></math></span>, i.e., <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>52</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1.36</mn></mrow></msubsup></math></span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow><mrow><mn>0.82</mn></mrow></msubsup></math></span> (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>49</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1.05</mn></mrow></msubsup></math></span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow><mrow><mn>0.66</mn></mrow></msubsup></math></span>) under the same radiation efficiency (<em>η</em>=0.2).</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"47 ","pages":"Article 100390"},"PeriodicalIF":10.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraining the initial Lorentz factor of gamma-ray bursts under different circumburst mediums\",\"authors\":\"Sheng-Jin Sun ,&nbsp;Shuang-Xi Yi ,&nbsp;Yuan-Chuan Zou ,&nbsp;Yu-Peng Yang ,&nbsp;Ying Qin ,&nbsp;Qing-Wen Tang ,&nbsp;Fa-Yin Wang\",\"doi\":\"10.1016/j.jheap.2025.100390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The initial Lorentz factor (<span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mtext>0</mtext></mrow></msub></math></span>) plays a crucial role in uncovering the physical characteristics of gamma-ray bursts (GRBs). Previous studies have indicated that the ambient medium density index <em>k</em> for GRBs falls in the range of 0 - 2, rather than exactly equal to 0 (homogeneous interstellar ambient) or 2 (typical stellar wind). In this work, we aim to constrain the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of GRBs considering their distinct circumburst medium. We select a total of 33 GRBs for our analysis, comprising 7 X-ray GRBs and 26 optical GRBs. Subsequently, by utilizing the deceleration time of fireball <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, we derive the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for the 33 GRBs assuming the radiation efficiency of <em>η</em>= 0.2. The inferred initial Lorentz factor was found to be from 50 to 500, consistent with previous studies. We then investigate the correlation between the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the isotropic energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span> (as well as the mean isotropic luminosity <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span>), finding very tight correlations between them, i.e., <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>52</mn></mrow><mrow><mn>0.24</mn></mrow></msubsup></math></span> (<span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi><mo>.</mo><mn>49</mn></mrow></mrow><mrow><mn>0.20</mn></mrow></msubsup></math></span>) with <em>η</em>=0.2. Additionally, we verify the correlation among <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the isotropic energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span> (or <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span>) and the peak energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow></msub></math></span>, i.e., <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>52</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1.36</mn></mrow></msubsup></math></span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow><mrow><mn>0.82</mn></mrow></msubsup></math></span> (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>49</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1.05</mn></mrow></msubsup></math></span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow><mrow><mn>0.66</mn></mrow></msubsup></math></span>) under the same radiation efficiency (<em>η</em>=0.2).</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"47 \",\"pages\":\"Article 100390\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404825000710\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825000710","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

初始洛伦兹因子(Γ0)在揭示伽玛射线暴(GRBs)的物理特征方面起着至关重要的作用。先前的研究表明,grb的环境介质密度指数k在0 - 2的范围内,而不是完全等于0(均匀星际环境)或2(典型的恒星风)。在这项工作中,我们的目标是考虑到grb不同的环爆介质来限制Γ0。我们总共选择了33个grb进行分析,其中包括7个x射线grb和26个光学grb。随后,利用火球tp的减速时间,我们推导出假设辐射效率η= 0.2的33个grb的Γ0。推断出的初始洛伦兹系数在50到500之间,与先前的研究一致。然后,我们研究了Γ0与各向同性能量Eγ,iso(以及平均各向同性光度Lγ,iso)之间的相关性,发现它们之间存在非常紧密的相关性,即Γ0∝Eγ,iso,520.24 (Γ0∝Lγ,iso.490.20), η=0.2。此外,我们验证了在相同的辐射效率(η=0.2)下,各向同性能量Eγ,iso(或Lγ,iso) Γ0与峰值能量Ep,z(即Eγ,iso,52∝Γ01.36Ep,z0.82)之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraining the initial Lorentz factor of gamma-ray bursts under different circumburst mediums
The initial Lorentz factor (Γ0) plays a crucial role in uncovering the physical characteristics of gamma-ray bursts (GRBs). Previous studies have indicated that the ambient medium density index k for GRBs falls in the range of 0 - 2, rather than exactly equal to 0 (homogeneous interstellar ambient) or 2 (typical stellar wind). In this work, we aim to constrain the Γ0 of GRBs considering their distinct circumburst medium. We select a total of 33 GRBs for our analysis, comprising 7 X-ray GRBs and 26 optical GRBs. Subsequently, by utilizing the deceleration time of fireball tp, we derive the Γ0 for the 33 GRBs assuming the radiation efficiency of η= 0.2. The inferred initial Lorentz factor was found to be from 50 to 500, consistent with previous studies. We then investigate the correlation between the Γ0 and the isotropic energy Eγ,iso (as well as the mean isotropic luminosity Lγ,iso), finding very tight correlations between them, i.e., Γ0Eγ,iso,520.24 (Γ0Lγ,iso.490.20) with η=0.2. Additionally, we verify the correlation among Γ0, the isotropic energy Eγ,iso (or Lγ,iso) and the peak energy Ep,z, i.e., Eγ,iso,52Γ01.36Ep,z0.82 (Lγ,iso,49Γ01.05Ep,z0.66) under the same radiation efficiency (η=0.2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Astrophysics
Journal of High Energy Astrophysics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
9.70
自引率
5.30%
发文量
38
审稿时长
65 days
期刊介绍: The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信