Sheng-Jin Sun , Shuang-Xi Yi , Yuan-Chuan Zou , Yu-Peng Yang , Ying Qin , Qing-Wen Tang , Fa-Yin Wang
{"title":"不同环爆介质下伽马暴初始洛伦兹因子的约束","authors":"Sheng-Jin Sun , Shuang-Xi Yi , Yuan-Chuan Zou , Yu-Peng Yang , Ying Qin , Qing-Wen Tang , Fa-Yin Wang","doi":"10.1016/j.jheap.2025.100390","DOIUrl":null,"url":null,"abstract":"<div><div>The initial Lorentz factor (<span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mtext>0</mtext></mrow></msub></math></span>) plays a crucial role in uncovering the physical characteristics of gamma-ray bursts (GRBs). Previous studies have indicated that the ambient medium density index <em>k</em> for GRBs falls in the range of 0 - 2, rather than exactly equal to 0 (homogeneous interstellar ambient) or 2 (typical stellar wind). In this work, we aim to constrain the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of GRBs considering their distinct circumburst medium. We select a total of 33 GRBs for our analysis, comprising 7 X-ray GRBs and 26 optical GRBs. Subsequently, by utilizing the deceleration time of fireball <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, we derive the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for the 33 GRBs assuming the radiation efficiency of <em>η</em>= 0.2. The inferred initial Lorentz factor was found to be from 50 to 500, consistent with previous studies. We then investigate the correlation between the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the isotropic energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span> (as well as the mean isotropic luminosity <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span>), finding very tight correlations between them, i.e., <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>52</mn></mrow><mrow><mn>0.24</mn></mrow></msubsup></math></span> (<span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi><mo>.</mo><mn>49</mn></mrow></mrow><mrow><mn>0.20</mn></mrow></msubsup></math></span>) with <em>η</em>=0.2. Additionally, we verify the correlation among <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the isotropic energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span> (or <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span>) and the peak energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow></msub></math></span>, i.e., <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>52</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1.36</mn></mrow></msubsup></math></span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow><mrow><mn>0.82</mn></mrow></msubsup></math></span> (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>49</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1.05</mn></mrow></msubsup></math></span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow><mrow><mn>0.66</mn></mrow></msubsup></math></span>) under the same radiation efficiency (<em>η</em>=0.2).</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"47 ","pages":"Article 100390"},"PeriodicalIF":10.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraining the initial Lorentz factor of gamma-ray bursts under different circumburst mediums\",\"authors\":\"Sheng-Jin Sun , Shuang-Xi Yi , Yuan-Chuan Zou , Yu-Peng Yang , Ying Qin , Qing-Wen Tang , Fa-Yin Wang\",\"doi\":\"10.1016/j.jheap.2025.100390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The initial Lorentz factor (<span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mtext>0</mtext></mrow></msub></math></span>) plays a crucial role in uncovering the physical characteristics of gamma-ray bursts (GRBs). Previous studies have indicated that the ambient medium density index <em>k</em> for GRBs falls in the range of 0 - 2, rather than exactly equal to 0 (homogeneous interstellar ambient) or 2 (typical stellar wind). In this work, we aim to constrain the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of GRBs considering their distinct circumburst medium. We select a total of 33 GRBs for our analysis, comprising 7 X-ray GRBs and 26 optical GRBs. Subsequently, by utilizing the deceleration time of fireball <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, we derive the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for the 33 GRBs assuming the radiation efficiency of <em>η</em>= 0.2. The inferred initial Lorentz factor was found to be from 50 to 500, consistent with previous studies. We then investigate the correlation between the <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the isotropic energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span> (as well as the mean isotropic luminosity <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span>), finding very tight correlations between them, i.e., <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>52</mn></mrow><mrow><mn>0.24</mn></mrow></msubsup></math></span> (<span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi><mo>.</mo><mn>49</mn></mrow></mrow><mrow><mn>0.20</mn></mrow></msubsup></math></span>) with <em>η</em>=0.2. Additionally, we verify the correlation among <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the isotropic energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span> (or <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow></mrow></msub></math></span>) and the peak energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow></msub></math></span>, i.e., <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>52</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1.36</mn></mrow></msubsup></math></span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow><mrow><mn>0.82</mn></mrow></msubsup></math></span> (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi><mo>,</mo><mrow><mi>iso</mi></mrow><mo>,</mo><mn>49</mn></mrow></msub></math></span> ∝ <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1.05</mn></mrow></msubsup></math></span><span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>z</mi></mrow><mrow><mn>0.66</mn></mrow></msubsup></math></span>) under the same radiation efficiency (<em>η</em>=0.2).</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"47 \",\"pages\":\"Article 100390\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404825000710\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825000710","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Constraining the initial Lorentz factor of gamma-ray bursts under different circumburst mediums
The initial Lorentz factor () plays a crucial role in uncovering the physical characteristics of gamma-ray bursts (GRBs). Previous studies have indicated that the ambient medium density index k for GRBs falls in the range of 0 - 2, rather than exactly equal to 0 (homogeneous interstellar ambient) or 2 (typical stellar wind). In this work, we aim to constrain the of GRBs considering their distinct circumburst medium. We select a total of 33 GRBs for our analysis, comprising 7 X-ray GRBs and 26 optical GRBs. Subsequently, by utilizing the deceleration time of fireball , we derive the for the 33 GRBs assuming the radiation efficiency of η= 0.2. The inferred initial Lorentz factor was found to be from 50 to 500, consistent with previous studies. We then investigate the correlation between the and the isotropic energy (as well as the mean isotropic luminosity ), finding very tight correlations between them, i.e., ∝ ( ∝ ) with η=0.2. Additionally, we verify the correlation among , the isotropic energy (or ) and the peak energy , i.e., ∝ ( ∝ ) under the same radiation efficiency (η=0.2).
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.