使用自回归深度学习模型预测ALS进展

Fabiano Papaiz , Mario Emílio Teixeira Dourado Jr , Ricardo Alexsandro de Medeiros Valentim , Felipe Ricardo dos Santos Fernandes , João Paulo Queiroz dos Santos , Antonio Higor Freire de Morais , Fernanda Brito Correia , Joel Perdiz Arrais
{"title":"使用自回归深度学习模型预测ALS进展","authors":"Fabiano Papaiz ,&nbsp;Mario Emílio Teixeira Dourado Jr ,&nbsp;Ricardo Alexsandro de Medeiros Valentim ,&nbsp;Felipe Ricardo dos Santos Fernandes ,&nbsp;João Paulo Queiroz dos Santos ,&nbsp;Antonio Higor Freire de Morais ,&nbsp;Fernanda Brito Correia ,&nbsp;Joel Perdiz Arrais","doi":"10.1016/j.ibmed.2025.100247","DOIUrl":null,"url":null,"abstract":"<div><div>Forecasting the progression of Amyotrophic Lateral Sclerosis (ALS) presents challenges due to the patients exhibiting different onset sites, progression rates, and survival times. Several recent studies have successfully applied machine learning to predict patient functional decline over time. However, the use of advanced techniques such as deep learning and temporal data modeling has yet to be explored in the field of ALS prognosis. In this study, we proposed a novel approach based on Autoregressive Multi-Step Multi-Output Time Series Forecasting to predict functional disability for the next 12 months, month-by-month, using patient data collected from the first three months. This study is the first to employ this approach to ALS prognosis to predict the functional decline over time. We extracted static and temporal features from the Pooled Resource Open-Access ALS Clinical Trials database. We developed and evaluated deep learning models using the Gated Recurrent Unit and Long Short-Term Memory algorithms. Our approach outperformed previous works with a significantly smaller set of input features, thus demonstrating greater effectiveness. With the promising results obtained, our approach could aid physicians in devising personalized treatment and resource planning or serve as an inclusion/exclusion criterion in clinical trials.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100247"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting ALS progression using Autoregressive deep learning models\",\"authors\":\"Fabiano Papaiz ,&nbsp;Mario Emílio Teixeira Dourado Jr ,&nbsp;Ricardo Alexsandro de Medeiros Valentim ,&nbsp;Felipe Ricardo dos Santos Fernandes ,&nbsp;João Paulo Queiroz dos Santos ,&nbsp;Antonio Higor Freire de Morais ,&nbsp;Fernanda Brito Correia ,&nbsp;Joel Perdiz Arrais\",\"doi\":\"10.1016/j.ibmed.2025.100247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forecasting the progression of Amyotrophic Lateral Sclerosis (ALS) presents challenges due to the patients exhibiting different onset sites, progression rates, and survival times. Several recent studies have successfully applied machine learning to predict patient functional decline over time. However, the use of advanced techniques such as deep learning and temporal data modeling has yet to be explored in the field of ALS prognosis. In this study, we proposed a novel approach based on Autoregressive Multi-Step Multi-Output Time Series Forecasting to predict functional disability for the next 12 months, month-by-month, using patient data collected from the first three months. This study is the first to employ this approach to ALS prognosis to predict the functional decline over time. We extracted static and temporal features from the Pooled Resource Open-Access ALS Clinical Trials database. We developed and evaluated deep learning models using the Gated Recurrent Unit and Long Short-Term Memory algorithms. Our approach outperformed previous works with a significantly smaller set of input features, thus demonstrating greater effectiveness. With the promising results obtained, our approach could aid physicians in devising personalized treatment and resource planning or serve as an inclusion/exclusion criterion in clinical trials.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于患者表现出不同的发病部位、进展率和生存时间,预测肌萎缩侧索硬化症(ALS)的进展面临挑战。最近的几项研究已经成功地应用机器学习来预测患者的功能衰退。然而,深度学习和时间数据建模等先进技术在ALS预后领域的应用还有待探索。在这项研究中,我们提出了一种基于自回归多步骤多输出时间序列预测的新方法,利用前三个月收集的患者数据,逐月预测未来12个月的功能残疾。这项研究首次将这种方法用于ALS的预后,以预测功能随时间的下降。我们从Pooled Resource Open-Access ALS临床试验数据库中提取静态和时间特征。我们开发并评估了使用门控循环单元和长短期记忆算法的深度学习模型。我们的方法以更少的输入特征集优于以前的工作,从而显示出更大的有效性。由于获得了有希望的结果,我们的方法可以帮助医生设计个性化治疗和资源计划,或作为临床试验的纳入/排除标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting ALS progression using Autoregressive deep learning models

Predicting ALS progression using Autoregressive deep learning models
Forecasting the progression of Amyotrophic Lateral Sclerosis (ALS) presents challenges due to the patients exhibiting different onset sites, progression rates, and survival times. Several recent studies have successfully applied machine learning to predict patient functional decline over time. However, the use of advanced techniques such as deep learning and temporal data modeling has yet to be explored in the field of ALS prognosis. In this study, we proposed a novel approach based on Autoregressive Multi-Step Multi-Output Time Series Forecasting to predict functional disability for the next 12 months, month-by-month, using patient data collected from the first three months. This study is the first to employ this approach to ALS prognosis to predict the functional decline over time. We extracted static and temporal features from the Pooled Resource Open-Access ALS Clinical Trials database. We developed and evaluated deep learning models using the Gated Recurrent Unit and Long Short-Term Memory algorithms. Our approach outperformed previous works with a significantly smaller set of input features, thus demonstrating greater effectiveness. With the promising results obtained, our approach could aid physicians in devising personalized treatment and resource planning or serve as an inclusion/exclusion criterion in clinical trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信