{"title":"勾股定理对的配对幂","authors":"Lorenz Halbeisen , Norbert Hungerbühler , Arman Shamsi Zargar","doi":"10.1016/j.indag.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>A pair <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> of positive integers is a <em>pythagorean pair</em> if <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> is a square. A pythagorean pair <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> is called a <em>pythapotent pair of degree</em> <span><math><mi>h</mi></math></span> if there is another pythagorean pair <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></math></span>, which is not a multiple of <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span>, such that <span><math><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>k</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>l</mi><mo>)</mo></mrow></math></span> is a pythagorean pair. To each pythagorean pair <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> we assign an elliptic curve <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup></mrow></msub></math></span> for <span><math><mrow><mi>h</mi><mo>≥</mo><mn>3</mn></mrow></math></span> with torsion group isomorphic to <span><math><mrow><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>×</mo><mi>Z</mi><mo>/</mo><mn>4</mn><mi>Z</mi></mrow></math></span> such that <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup></mrow></msub></math></span> has positive rank over <span><math><mi>Q</mi></math></span> if and only if <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> is a pythapotent pair of degree <span><math><mi>h</mi></math></span>. As a side result, we get that if <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> is a pythapotent pair of degree <span><math><mi>h</mi></math></span>, then there exist infinitely many pythagorean pairs <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></math></span>, not multiples of each other, such that <span><math><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>k</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>l</mi><mo>)</mo></mrow></math></span> is a pythagorean pair. In particular, we show that any pythagorean pair is always a pythapotent pair of degree 3. In a previous work, pythapotent pairs of degrees 1 and 2 have been studied.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 3","pages":"Pages 903-911"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pairing powers of pythagorean pairs\",\"authors\":\"Lorenz Halbeisen , Norbert Hungerbühler , Arman Shamsi Zargar\",\"doi\":\"10.1016/j.indag.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A pair <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> of positive integers is a <em>pythagorean pair</em> if <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> is a square. A pythagorean pair <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> is called a <em>pythapotent pair of degree</em> <span><math><mi>h</mi></math></span> if there is another pythagorean pair <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></math></span>, which is not a multiple of <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span>, such that <span><math><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>k</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>l</mi><mo>)</mo></mrow></math></span> is a pythagorean pair. To each pythagorean pair <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> we assign an elliptic curve <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup></mrow></msub></math></span> for <span><math><mrow><mi>h</mi><mo>≥</mo><mn>3</mn></mrow></math></span> with torsion group isomorphic to <span><math><mrow><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>×</mo><mi>Z</mi><mo>/</mo><mn>4</mn><mi>Z</mi></mrow></math></span> such that <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup></mrow></msub></math></span> has positive rank over <span><math><mi>Q</mi></math></span> if and only if <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> is a pythapotent pair of degree <span><math><mi>h</mi></math></span>. As a side result, we get that if <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> is a pythapotent pair of degree <span><math><mi>h</mi></math></span>, then there exist infinitely many pythagorean pairs <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></math></span>, not multiples of each other, such that <span><math><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>k</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>l</mi><mo>)</mo></mrow></math></span> is a pythagorean pair. In particular, we show that any pythagorean pair is always a pythapotent pair of degree 3. In a previous work, pythapotent pairs of degrees 1 and 2 have been studied.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 3\",\"pages\":\"Pages 903-911\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724001162\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724001162","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A pair of positive integers is a pythagorean pair if is a square. A pythagorean pair is called a pythapotent pair of degree if there is another pythagorean pair , which is not a multiple of , such that is a pythagorean pair. To each pythagorean pair we assign an elliptic curve for with torsion group isomorphic to such that has positive rank over if and only if is a pythapotent pair of degree . As a side result, we get that if is a pythapotent pair of degree , then there exist infinitely many pythagorean pairs , not multiples of each other, such that is a pythagorean pair. In particular, we show that any pythagorean pair is always a pythapotent pair of degree 3. In a previous work, pythapotent pairs of degrees 1 and 2 have been studied.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.