准banach时频空间和Schatten类的分解

IF 0.5 4区 数学 Q3 MATHEMATICS
Divyang G. Bhimani , Joachim Toft
{"title":"准banach时频空间和Schatten类的分解","authors":"Divyang G. Bhimani ,&nbsp;Joachim Toft","doi":"10.1016/j.indag.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>We deduce factorization properties for Wiener amalgam spaces <span><math><mrow><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup></mrow></math></span>, an extended family of modulation spaces <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>ℬ</mi><mo>)</mo></mrow></mrow></math></span>, and for Schatten symbols <span><math><msubsup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> in pseudo-differential calculus under e.<!--> <!-->g. convolutions, twisted convolutions and symbolic products. Here <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>ℬ</mi><mo>)</mo></mrow></mrow></math></span> can be any quasi-Banach Orlicz modulation space. For example we show that <span><math><mrow><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>r</mi></mrow></msup><mo>∗</mo><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>=</mo><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>r</mi></mrow></msup><mi>#</mi><msubsup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>w</mi></mrow></msubsup></mrow></math></span> when <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>. In particular we improve Rudin’s identity <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>∗</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 3","pages":"Pages 838-879"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factorizations for quasi-Banach time–frequency spaces and Schatten classes\",\"authors\":\"Divyang G. Bhimani ,&nbsp;Joachim Toft\",\"doi\":\"10.1016/j.indag.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We deduce factorization properties for Wiener amalgam spaces <span><math><mrow><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup></mrow></math></span>, an extended family of modulation spaces <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>ℬ</mi><mo>)</mo></mrow></mrow></math></span>, and for Schatten symbols <span><math><msubsup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> in pseudo-differential calculus under e.<!--> <!-->g. convolutions, twisted convolutions and symbolic products. Here <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>ℬ</mi><mo>)</mo></mrow></mrow></math></span> can be any quasi-Banach Orlicz modulation space. For example we show that <span><math><mrow><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>r</mi></mrow></msup><mo>∗</mo><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>=</mo><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>r</mi></mrow></msup><mi>#</mi><msubsup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>w</mi></mrow></msubsup></mrow></math></span> when <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>. In particular we improve Rudin’s identity <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>∗</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span>.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 3\",\"pages\":\"Pages 838-879\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724001095\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724001095","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们推导了伪微分学中Wiener amalgam空间WLp,q,调制空间M(ω, ν)的扩展族,以及Schatten符号spw在卷积、扭曲卷积和符号积下的分解性质。这里M(ω, ν)可以是任何拟banach Orlicz调制空间。例如,当r∈(0,1),r≤p,q<;∞时,我们证明了WL1,r∗WLp,q=WLp,q和WL1,r#spw=spw。特别地,我们改进了Rudin的等式L1 * L1=L1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorizations for quasi-Banach time–frequency spaces and Schatten classes
We deduce factorization properties for Wiener amalgam spaces WLp,q, an extended family of modulation spaces M(ω,), and for Schatten symbols spw in pseudo-differential calculus under e. g. convolutions, twisted convolutions and symbolic products. Here M(ω,) can be any quasi-Banach Orlicz modulation space. For example we show that WL1,rWLp,q=WLp,q and WL1,r#spw=spw when r(0,1], rp,q<. In particular we improve Rudin’s identity L1L1=L1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信