一种新的相称与不相称分数阶生态系统的稳定性、分岔与混沌特征

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiayi Liu, Ruihong Li, Dongmei Huang
{"title":"一种新的相称与不相称分数阶生态系统的稳定性、分岔与混沌特征","authors":"Jiayi Liu,&nbsp;Ruihong Li,&nbsp;Dongmei Huang","doi":"10.1016/j.matcom.2025.04.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a new incommensurate fractional-order ecological system describing the interaction between permafrost melting, vegetation degradation and temperature is introduced to explore its dynamical behavior. At first, the existence and uniqueness of the new system is proved utilizing Picard’s operator and Banach fixed-point theorem. Next, the influence of simultaneous changing system parameter and fractional orders on the stability of the incommensurate system is discussed, and the degree of influence of each fractional order is visually compared and analyzed. In addition, it is also indicated that parameter changes can cause the static bifurcation. Subsequently, the sufficient conditions and an analytical expression for the critical value of Hopf bifurcation caused by system parameter in the incommensurate fractional-order ecological system are provided for the first time, and the bifurcation diagrams are utilized to verify the result. Furthermore, by observing the bifurcation diagram of incommensurate and corresponding commensurate system, it can be deduced that changes in the fractional orders of incommensurate system can cause Hopf bifurcation to be postponed or advanced. Then, the chaotic behaviors of commensurate and incommensurate system are explored by utilizing multiple numerical indicators. It is worth noting that there exists a path from quasi-periodic motion to chaos in the system. Finally, the chaotic domain is proposed to investigate the influence of fractional orders and parameter on chaotic behaviors in the incommensurate fractional-order system.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"236 ","pages":"Pages 248-269"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability, bifurcation and characteristics of chaos in a new commensurate and incommensurate fractional-order ecological system\",\"authors\":\"Jiayi Liu,&nbsp;Ruihong Li,&nbsp;Dongmei Huang\",\"doi\":\"10.1016/j.matcom.2025.04.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a new incommensurate fractional-order ecological system describing the interaction between permafrost melting, vegetation degradation and temperature is introduced to explore its dynamical behavior. At first, the existence and uniqueness of the new system is proved utilizing Picard’s operator and Banach fixed-point theorem. Next, the influence of simultaneous changing system parameter and fractional orders on the stability of the incommensurate system is discussed, and the degree of influence of each fractional order is visually compared and analyzed. In addition, it is also indicated that parameter changes can cause the static bifurcation. Subsequently, the sufficient conditions and an analytical expression for the critical value of Hopf bifurcation caused by system parameter in the incommensurate fractional-order ecological system are provided for the first time, and the bifurcation diagrams are utilized to verify the result. Furthermore, by observing the bifurcation diagram of incommensurate and corresponding commensurate system, it can be deduced that changes in the fractional orders of incommensurate system can cause Hopf bifurcation to be postponed or advanced. Then, the chaotic behaviors of commensurate and incommensurate system are explored by utilizing multiple numerical indicators. It is worth noting that there exists a path from quasi-periodic motion to chaos in the system. Finally, the chaotic domain is proposed to investigate the influence of fractional orders and parameter on chaotic behaviors in the incommensurate fractional-order system.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"236 \",\"pages\":\"Pages 248-269\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425001430\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425001430","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入一个描述多年冻土融化、植被退化和温度相互作用的非相称分数级生态系统,探讨其动力学行为。首先利用Picard算子和Banach不动点定理证明了新系统的存在唯一性。其次,讨论了系统参数和分数阶同时变化对不适应系统稳定性的影响,并对各分数阶的影响程度进行了直观的比较和分析。此外,还表明参数的变化会引起静态分岔。随后,首次给出了不相称分数阶生态系统中系统参数引起Hopf分岔临界值的充分条件和解析表达式,并利用分岔图对结果进行了验证。进一步,通过观察不相称系统及其对应的相称系统的分岔图,可以推导出不相称系统分数阶的变化会导致Hopf分岔推迟或提前。然后,利用多个数值指标,探讨了相称系统和不相称系统的混沌行为。值得注意的是,系统中存在从准周期运动到混沌的路径。最后,提出了混沌域来研究分数阶和参数对非相称分数阶系统混沌行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability, bifurcation and characteristics of chaos in a new commensurate and incommensurate fractional-order ecological system
In this paper, a new incommensurate fractional-order ecological system describing the interaction between permafrost melting, vegetation degradation and temperature is introduced to explore its dynamical behavior. At first, the existence and uniqueness of the new system is proved utilizing Picard’s operator and Banach fixed-point theorem. Next, the influence of simultaneous changing system parameter and fractional orders on the stability of the incommensurate system is discussed, and the degree of influence of each fractional order is visually compared and analyzed. In addition, it is also indicated that parameter changes can cause the static bifurcation. Subsequently, the sufficient conditions and an analytical expression for the critical value of Hopf bifurcation caused by system parameter in the incommensurate fractional-order ecological system are provided for the first time, and the bifurcation diagrams are utilized to verify the result. Furthermore, by observing the bifurcation diagram of incommensurate and corresponding commensurate system, it can be deduced that changes in the fractional orders of incommensurate system can cause Hopf bifurcation to be postponed or advanced. Then, the chaotic behaviors of commensurate and incommensurate system are explored by utilizing multiple numerical indicators. It is worth noting that there exists a path from quasi-periodic motion to chaos in the system. Finally, the chaotic domain is proposed to investigate the influence of fractional orders and parameter on chaotic behaviors in the incommensurate fractional-order system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信