{"title":"q进自同构的受限Hausdorff谱","authors":"Jorge Fariña-Asategui","doi":"10.1016/j.aim.2025.110294","DOIUrl":null,"url":null,"abstract":"<div><div>Firstly, we completely determine the self-similar Hausdorff spectrum of the group of <em>q</em>-adic automorphisms where <em>q</em> is a prime power, answering a question of Grigorchuk. Indeed, we take a further step and completely determine its Hausdorff spectra restricted to the most important subclasses of self-similar groups, providing examples differing drastically from the previously known ones in the literature. Our proof relies on a new explicit formula for the computation of the Hausdorff dimension of closed self-similar groups and a generalization of iterated permutational wreath products.</div><div>Secondly, we provide for every prime <em>p</em> the first examples of just infinite branch pro-<em>p</em> groups with zero Hausdorff dimension in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, giving strong evidence against a well-known conjecture of Boston.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110294"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restricted Hausdorff spectra of q-adic automorphisms\",\"authors\":\"Jorge Fariña-Asategui\",\"doi\":\"10.1016/j.aim.2025.110294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Firstly, we completely determine the self-similar Hausdorff spectrum of the group of <em>q</em>-adic automorphisms where <em>q</em> is a prime power, answering a question of Grigorchuk. Indeed, we take a further step and completely determine its Hausdorff spectra restricted to the most important subclasses of self-similar groups, providing examples differing drastically from the previously known ones in the literature. Our proof relies on a new explicit formula for the computation of the Hausdorff dimension of closed self-similar groups and a generalization of iterated permutational wreath products.</div><div>Secondly, we provide for every prime <em>p</em> the first examples of just infinite branch pro-<em>p</em> groups with zero Hausdorff dimension in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, giving strong evidence against a well-known conjecture of Boston.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"472 \",\"pages\":\"Article 110294\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001926\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001926","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Restricted Hausdorff spectra of q-adic automorphisms
Firstly, we completely determine the self-similar Hausdorff spectrum of the group of q-adic automorphisms where q is a prime power, answering a question of Grigorchuk. Indeed, we take a further step and completely determine its Hausdorff spectra restricted to the most important subclasses of self-similar groups, providing examples differing drastically from the previously known ones in the literature. Our proof relies on a new explicit formula for the computation of the Hausdorff dimension of closed self-similar groups and a generalization of iterated permutational wreath products.
Secondly, we provide for every prime p the first examples of just infinite branch pro-p groups with zero Hausdorff dimension in , giving strong evidence against a well-known conjecture of Boston.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.