{"title":"瞬子花同调中的2-扭转","authors":"Zhenkun Li , Fan Ye","doi":"10.1016/j.aim.2025.110289","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the existence of 2-torsion in instanton Floer homology with <span><math><mi>Z</mi></math></span> coefficients for closed 3-manifolds and singular knots. First, we show that the non-existence of 2-torsion in the framed instanton Floer homology <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> of any nonzero integral <em>n</em>-surgery along a knot <em>K</em> in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> would imply that <em>K</em> is fibered. Also, we show that <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> for any nontrivial <em>K</em> with <span><math><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>4</mn></math></span> always has 2-torsion. These two results indicate that the existence of 2-torsion is expected to be a generic phenomenon for Dehn surgeries along knots. Second, we show that for genus-one knots with nontrivial Alexander polynomials and for unknotting-number-one knots, the unreduced singular instanton knot homology <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mi>K</mi><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> always has 2-torsion. Finally, some crucial lemmas that help us demonstrate the existence of 2-torsion are motivated by analogous results in Heegaard Floer theory, which may be of independent interest. In particular, we show that, for a knot <em>K</em> in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, if there is a nonzero rational number <em>r</em> such that the dual knot <span><math><msub><mrow><mover><mrow><mi>K</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub></math></span> inside <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is Floer simple, then <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> must be an L-space and <em>K</em> must be an L-space knot.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110289"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-torsion in instanton Floer homology\",\"authors\":\"Zhenkun Li , Fan Ye\",\"doi\":\"10.1016/j.aim.2025.110289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the existence of 2-torsion in instanton Floer homology with <span><math><mi>Z</mi></math></span> coefficients for closed 3-manifolds and singular knots. First, we show that the non-existence of 2-torsion in the framed instanton Floer homology <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> of any nonzero integral <em>n</em>-surgery along a knot <em>K</em> in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> would imply that <em>K</em> is fibered. Also, we show that <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> for any nontrivial <em>K</em> with <span><math><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>4</mn></math></span> always has 2-torsion. These two results indicate that the existence of 2-torsion is expected to be a generic phenomenon for Dehn surgeries along knots. Second, we show that for genus-one knots with nontrivial Alexander polynomials and for unknotting-number-one knots, the unreduced singular instanton knot homology <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mi>K</mi><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> always has 2-torsion. Finally, some crucial lemmas that help us demonstrate the existence of 2-torsion are motivated by analogous results in Heegaard Floer theory, which may be of independent interest. In particular, we show that, for a knot <em>K</em> in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, if there is a nonzero rational number <em>r</em> such that the dual knot <span><math><msub><mrow><mover><mrow><mi>K</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub></math></span> inside <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is Floer simple, then <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> must be an L-space and <em>K</em> must be an L-space knot.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"472 \",\"pages\":\"Article 110289\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001872\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001872","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
This paper studies the existence of 2-torsion in instanton Floer homology with coefficients for closed 3-manifolds and singular knots. First, we show that the non-existence of 2-torsion in the framed instanton Floer homology of any nonzero integral n-surgery along a knot K in would imply that K is fibered. Also, we show that for any nontrivial K with always has 2-torsion. These two results indicate that the existence of 2-torsion is expected to be a generic phenomenon for Dehn surgeries along knots. Second, we show that for genus-one knots with nontrivial Alexander polynomials and for unknotting-number-one knots, the unreduced singular instanton knot homology always has 2-torsion. Finally, some crucial lemmas that help us demonstrate the existence of 2-torsion are motivated by analogous results in Heegaard Floer theory, which may be of independent interest. In particular, we show that, for a knot K in , if there is a nonzero rational number r such that the dual knot inside is Floer simple, then must be an L-space and K must be an L-space knot.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.