瞬子花同调中的2-扭转

IF 1.5 1区 数学 Q1 MATHEMATICS
Zhenkun Li , Fan Ye
{"title":"瞬子花同调中的2-扭转","authors":"Zhenkun Li ,&nbsp;Fan Ye","doi":"10.1016/j.aim.2025.110289","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the existence of 2-torsion in instanton Floer homology with <span><math><mi>Z</mi></math></span> coefficients for closed 3-manifolds and singular knots. First, we show that the non-existence of 2-torsion in the framed instanton Floer homology <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> of any nonzero integral <em>n</em>-surgery along a knot <em>K</em> in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> would imply that <em>K</em> is fibered. Also, we show that <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> for any nontrivial <em>K</em> with <span><math><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>4</mn></math></span> always has 2-torsion. These two results indicate that the existence of 2-torsion is expected to be a generic phenomenon for Dehn surgeries along knots. Second, we show that for genus-one knots with nontrivial Alexander polynomials and for unknotting-number-one knots, the unreduced singular instanton knot homology <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mi>K</mi><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> always has 2-torsion. Finally, some crucial lemmas that help us demonstrate the existence of 2-torsion are motivated by analogous results in Heegaard Floer theory, which may be of independent interest. In particular, we show that, for a knot <em>K</em> in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, if there is a nonzero rational number <em>r</em> such that the dual knot <span><math><msub><mrow><mover><mrow><mi>K</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub></math></span> inside <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is Floer simple, then <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> must be an L-space and <em>K</em> must be an L-space knot.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110289"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-torsion in instanton Floer homology\",\"authors\":\"Zhenkun Li ,&nbsp;Fan Ye\",\"doi\":\"10.1016/j.aim.2025.110289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the existence of 2-torsion in instanton Floer homology with <span><math><mi>Z</mi></math></span> coefficients for closed 3-manifolds and singular knots. First, we show that the non-existence of 2-torsion in the framed instanton Floer homology <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> of any nonzero integral <em>n</em>-surgery along a knot <em>K</em> in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> would imply that <em>K</em> is fibered. Also, we show that <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> for any nontrivial <em>K</em> with <span><math><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>4</mn></math></span> always has 2-torsion. These two results indicate that the existence of 2-torsion is expected to be a generic phenomenon for Dehn surgeries along knots. Second, we show that for genus-one knots with nontrivial Alexander polynomials and for unknotting-number-one knots, the unreduced singular instanton knot homology <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>♯</mo></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mi>K</mi><mo>;</mo><mi>Z</mi><mo>)</mo></math></span> always has 2-torsion. Finally, some crucial lemmas that help us demonstrate the existence of 2-torsion are motivated by analogous results in Heegaard Floer theory, which may be of independent interest. In particular, we show that, for a knot <em>K</em> in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, if there is a nonzero rational number <em>r</em> such that the dual knot <span><math><msub><mrow><mover><mrow><mi>K</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub></math></span> inside <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is Floer simple, then <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> must be an L-space and <em>K</em> must be an L-space knot.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"472 \",\"pages\":\"Article 110289\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001872\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001872","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了闭3流形和奇异节的Z系数瞬时花同调中2-扭转的存在性。首先,我们证明了在S3中任何沿结点K的非零积分n-手术的框架瞬时花同调I♯(Sn3(K);Z)中不存在2-扭转意味着K是纤维的。同时,我们证明了对于任意非平凡K,当r=1,1/2,1/4时,I♯(Sr3(K);Z)总是具有2-扭转。这两个结果表明,2-扭转的存在有望成为沿节Dehn手术的普遍现象。其次,我们证明了对于具有非平凡Alexander多项式的1属结和1属结,未约简奇异瞬结同调I # (S3,K;Z)总是具有2-扭转。最后,一些帮助我们证明2-扭转存在的关键引理是由Heegaard flower理论中的类似结果激发的,这可能是独立的兴趣。特别地,我们证明了,对于S3中的一个结点K,如果存在一个非零有理数r使得Sr3(K)中的对偶结点K ~ r是简单花,那么Sr3(K)一定是l空间的结点,K一定是l空间的结点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-torsion in instanton Floer homology
This paper studies the existence of 2-torsion in instanton Floer homology with Z coefficients for closed 3-manifolds and singular knots. First, we show that the non-existence of 2-torsion in the framed instanton Floer homology I(Sn3(K);Z) of any nonzero integral n-surgery along a knot K in S3 would imply that K is fibered. Also, we show that I(Sr3(K);Z) for any nontrivial K with r=1,1/2,1/4 always has 2-torsion. These two results indicate that the existence of 2-torsion is expected to be a generic phenomenon for Dehn surgeries along knots. Second, we show that for genus-one knots with nontrivial Alexander polynomials and for unknotting-number-one knots, the unreduced singular instanton knot homology I(S3,K;Z) always has 2-torsion. Finally, some crucial lemmas that help us demonstrate the existence of 2-torsion are motivated by analogous results in Heegaard Floer theory, which may be of independent interest. In particular, we show that, for a knot K in S3, if there is a nonzero rational number r such that the dual knot K˜r inside Sr3(K) is Floer simple, then Sr3(K) must be an L-space and K must be an L-space knot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信