用非等温多相场方法模拟钛金材料中熔池和IMC晶粒相互作用

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Upadesh Subedi , Nele Moelans , Tomasz Tański , Anil Kunwar
{"title":"用非等温多相场方法模拟钛金材料中熔池和IMC晶粒相互作用","authors":"Upadesh Subedi ,&nbsp;Nele Moelans ,&nbsp;Tomasz Tański ,&nbsp;Anil Kunwar","doi":"10.1016/j.commatsci.2025.113875","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a combined phase-field multi-physics approach to simulate laser-induced phase transformations and microstructural evolution in the Ti-Au alloy system, which is crucial for advancing additive manufacturing processes. By varying laser parameters, such as irradiance and scan speed, we used simulations to quantify phase areas and free energy dynamics, revealing intricate interplays between heat flow and chemical diffusion. The simulations show that under maximum heat flux conditions (150 kW/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> at 4 nm/ms), meltpool depth reached 180 nm, surpassing the 158 nm depth observed at 134.6 kW/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Moreover, the growth of Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Au intermetallic compound (IMC) formed due to the interfacial reaction was studied. IMC layer thickness peaked at 364 nm under higher irradiance, marking a 25% increase over lower irradiance conditions. Analysis of Lewis Number revealed that meltpool diffusion occurs more slowly than heat transfer.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"255 ","pages":"Article 113875"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-isothermal multi-phase field approach to model the meltpool and IMC grains interaction in Ti-Au material\",\"authors\":\"Upadesh Subedi ,&nbsp;Nele Moelans ,&nbsp;Tomasz Tański ,&nbsp;Anil Kunwar\",\"doi\":\"10.1016/j.commatsci.2025.113875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a combined phase-field multi-physics approach to simulate laser-induced phase transformations and microstructural evolution in the Ti-Au alloy system, which is crucial for advancing additive manufacturing processes. By varying laser parameters, such as irradiance and scan speed, we used simulations to quantify phase areas and free energy dynamics, revealing intricate interplays between heat flow and chemical diffusion. The simulations show that under maximum heat flux conditions (150 kW/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> at 4 nm/ms), meltpool depth reached 180 nm, surpassing the 158 nm depth observed at 134.6 kW/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Moreover, the growth of Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Au intermetallic compound (IMC) formed due to the interfacial reaction was studied. IMC layer thickness peaked at 364 nm under higher irradiance, marking a 25% increase over lower irradiance conditions. Analysis of Lewis Number revealed that meltpool diffusion occurs more slowly than heat transfer.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"255 \",\"pages\":\"Article 113875\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625002186\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002186","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种相场多物理场相结合的方法来模拟激光诱导的Ti-Au合金体系的相变和微观组织演变,这对于推进增材制造工艺至关重要。通过改变激光参数,如辐照度和扫描速度,我们使用模拟来量化相面积和自由能动力学,揭示热流和化学扩散之间复杂的相互作用。模拟结果表明,在最大热流密度条件下(4 nm/ms时150 kW/cm2),熔池深度达到180 nm,超过了134.6 kW/cm2时观测到的158 nm深度。并对界面反应形成的Ti3Au金属间化合物(IMC)的生长进行了研究。在高辐照度条件下,IMC层厚度在364nm处达到峰值,比低辐照度条件下增加了25%。刘易斯数分析表明,熔池扩散比换热慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A non-isothermal multi-phase field approach to model the meltpool and IMC grains interaction in Ti-Au material

A non-isothermal multi-phase field approach to model the meltpool and IMC grains interaction in Ti-Au material
This study introduces a combined phase-field multi-physics approach to simulate laser-induced phase transformations and microstructural evolution in the Ti-Au alloy system, which is crucial for advancing additive manufacturing processes. By varying laser parameters, such as irradiance and scan speed, we used simulations to quantify phase areas and free energy dynamics, revealing intricate interplays between heat flow and chemical diffusion. The simulations show that under maximum heat flux conditions (150 kW/cm2 at 4 nm/ms), meltpool depth reached 180 nm, surpassing the 158 nm depth observed at 134.6 kW/cm2. Moreover, the growth of Ti3Au intermetallic compound (IMC) formed due to the interfacial reaction was studied. IMC layer thickness peaked at 364 nm under higher irradiance, marking a 25% increase over lower irradiance conditions. Analysis of Lewis Number revealed that meltpool diffusion occurs more slowly than heat transfer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信