Yijie Wang , Runqing Wang , Jian Sun , Fang Deng , Gang Wang , Jie Chen
{"title":"关注具有运输约束的柔性作业车间调度的增强强化学习","authors":"Yijie Wang , Runqing Wang , Jian Sun , Fang Deng , Gang Wang , Jie Chen","doi":"10.1016/j.eswa.2025.127671","DOIUrl":null,"url":null,"abstract":"<div><div>In smart manufacturing systems, the flexible job-shop scheduling problem with transportation constraints (FJSPT) is a critical challenge that can significantly improve production efficiency. FJSPT extends the traditional flexible job-shop scheduling problem (FJSP) by integrating the scheduling of automated guided vehicles (AGVs) to transport intermediate products between machines. Recent advances in data-driven methods, particularly deep reinforcement learning (DRL), have addressed challenging combinatorial optimization problems. DRL effectively solves discrete optimization problems by generating high-quality solutions within reasonable time. This paper presents an end-to-end DRL approach for the simultaneous scheduling of machines and AGVs in FJSPT. To apply DRL to the FJSPT, this paper first formulates a Markov decision process (MDP) model. The action space combines operation selection, machine assignment, and AGV planning. To capture problem characteristics, the scheduling agent uses a graph attention network (GAT) and multi-layer perceptron (MLP) for feature extraction, combined with proximal policy optimization (PPO) for stable training. Experimental evaluations conducted on synthetic data and public instances demonstrate that the proposed method outperforms dispatching rules and state-of-the-art models in both scheduling performance and computational efficiency.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"282 ","pages":"Article 127671"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention enhanced reinforcement learning for flexible job shop scheduling with transportation constraints\",\"authors\":\"Yijie Wang , Runqing Wang , Jian Sun , Fang Deng , Gang Wang , Jie Chen\",\"doi\":\"10.1016/j.eswa.2025.127671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In smart manufacturing systems, the flexible job-shop scheduling problem with transportation constraints (FJSPT) is a critical challenge that can significantly improve production efficiency. FJSPT extends the traditional flexible job-shop scheduling problem (FJSP) by integrating the scheduling of automated guided vehicles (AGVs) to transport intermediate products between machines. Recent advances in data-driven methods, particularly deep reinforcement learning (DRL), have addressed challenging combinatorial optimization problems. DRL effectively solves discrete optimization problems by generating high-quality solutions within reasonable time. This paper presents an end-to-end DRL approach for the simultaneous scheduling of machines and AGVs in FJSPT. To apply DRL to the FJSPT, this paper first formulates a Markov decision process (MDP) model. The action space combines operation selection, machine assignment, and AGV planning. To capture problem characteristics, the scheduling agent uses a graph attention network (GAT) and multi-layer perceptron (MLP) for feature extraction, combined with proximal policy optimization (PPO) for stable training. Experimental evaluations conducted on synthetic data and public instances demonstrate that the proposed method outperforms dispatching rules and state-of-the-art models in both scheduling performance and computational efficiency.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"282 \",\"pages\":\"Article 127671\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095741742501293X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741742501293X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Attention enhanced reinforcement learning for flexible job shop scheduling with transportation constraints
In smart manufacturing systems, the flexible job-shop scheduling problem with transportation constraints (FJSPT) is a critical challenge that can significantly improve production efficiency. FJSPT extends the traditional flexible job-shop scheduling problem (FJSP) by integrating the scheduling of automated guided vehicles (AGVs) to transport intermediate products between machines. Recent advances in data-driven methods, particularly deep reinforcement learning (DRL), have addressed challenging combinatorial optimization problems. DRL effectively solves discrete optimization problems by generating high-quality solutions within reasonable time. This paper presents an end-to-end DRL approach for the simultaneous scheduling of machines and AGVs in FJSPT. To apply DRL to the FJSPT, this paper first formulates a Markov decision process (MDP) model. The action space combines operation selection, machine assignment, and AGV planning. To capture problem characteristics, the scheduling agent uses a graph attention network (GAT) and multi-layer perceptron (MLP) for feature extraction, combined with proximal policy optimization (PPO) for stable training. Experimental evaluations conducted on synthetic data and public instances demonstrate that the proposed method outperforms dispatching rules and state-of-the-art models in both scheduling performance and computational efficiency.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.