从高维网络流量到零日攻击检测

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jesús F. Cevallos M., Alessandra Rizzardi , Sabrina Sicari , Alberto Coen-Porisini
{"title":"从高维网络流量到零日攻击检测","authors":"Jesús F. Cevallos M.,&nbsp;Alessandra Rizzardi ,&nbsp;Sabrina Sicari ,&nbsp;Alberto Coen-Porisini","doi":"10.1016/j.comnet.2025.111264","DOIUrl":null,"url":null,"abstract":"<div><div>Recent trends in zero-day attack (ZdA) detection use <em>collective</em> anomaly detection to give insights on out-of-distribution anomalies in a <em>zero-shot</em> fashion. Among these, existing frameworks propose the use of specialised labelling strategies to mimic a step-wise abstract anomaly detection algorithm that generalise ZdA-detection over low-dimensional traffic-flow statistics. To enlarge such applicative scenarios, this paper proposes <span>hero</span>, which is compatible with <strong>H</strong>igh-dimensional raw-network traffic captures when performing z<strong>ERO</strong>-day attack detection. To reach convergence over such a high-dimensional and noisy input space, <span>hero</span> decouples the <em>representation</em> task and the correspondent gradient updates from the <em>discriminative</em> task, following the <em>neural algorithmic reasoning</em> blueprint. Specifically, a neural processor is first trained on the discriminative task using synthetic data, and the weights are then frozen. A second training phase successfully optimises the encoding and decoding networks using raw-traffic captures and the algorithmically-aligned processor. Experiments with well-known intrusion detection datasets demonstrate the crucial advantage of using a two-stage training framework to achieve convergence. To the best of the authors’ knowledge, <span>hero</span> is the first deep learning-based instrument that performs collective anomaly detection and categorisation over raw network traffic on a zero-shot basis, i.e., without using labels.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"265 ","pages":"Article 111264"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HERO: From High-dimensional network traffic to zERO-Day attack detection\",\"authors\":\"Jesús F. Cevallos M.,&nbsp;Alessandra Rizzardi ,&nbsp;Sabrina Sicari ,&nbsp;Alberto Coen-Porisini\",\"doi\":\"10.1016/j.comnet.2025.111264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent trends in zero-day attack (ZdA) detection use <em>collective</em> anomaly detection to give insights on out-of-distribution anomalies in a <em>zero-shot</em> fashion. Among these, existing frameworks propose the use of specialised labelling strategies to mimic a step-wise abstract anomaly detection algorithm that generalise ZdA-detection over low-dimensional traffic-flow statistics. To enlarge such applicative scenarios, this paper proposes <span>hero</span>, which is compatible with <strong>H</strong>igh-dimensional raw-network traffic captures when performing z<strong>ERO</strong>-day attack detection. To reach convergence over such a high-dimensional and noisy input space, <span>hero</span> decouples the <em>representation</em> task and the correspondent gradient updates from the <em>discriminative</em> task, following the <em>neural algorithmic reasoning</em> blueprint. Specifically, a neural processor is first trained on the discriminative task using synthetic data, and the weights are then frozen. A second training phase successfully optimises the encoding and decoding networks using raw-traffic captures and the algorithmically-aligned processor. Experiments with well-known intrusion detection datasets demonstrate the crucial advantage of using a two-stage training framework to achieve convergence. To the best of the authors’ knowledge, <span>hero</span> is the first deep learning-based instrument that performs collective anomaly detection and categorisation over raw network traffic on a zero-shot basis, i.e., without using labels.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"265 \",\"pages\":\"Article 111264\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625002324\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625002324","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

零日攻击(ZdA)检测的最新趋势是使用集体异常检测以零射击的方式提供对分布外异常的见解。其中,现有框架提出使用专门的标记策略来模拟逐步抽象异常检测算法,该算法将zda检测推广到低维交通流统计上。为了扩大这种应用场景,本文提出了hero,它在进行零日攻击检测时兼容高维原始网络流量捕获。为了在这样一个高维和有噪声的输入空间上达到收敛,hero将表示任务和相应的梯度更新从判别任务中解耦,遵循神经算法的推理蓝图。具体而言,首先使用合成数据对神经处理器进行判别任务训练,然后冻结权重。第二个训练阶段使用原始流量捕获和算法对齐处理器成功地优化了编码和解码网络。对知名入侵检测数据集的实验证明了使用两阶段训练框架实现收敛的关键优势。据作者所知,hero是第一个基于深度学习的工具,它在零采样的基础上对原始网络流量进行集体异常检测和分类,即不使用标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HERO: From High-dimensional network traffic to zERO-Day attack detection
Recent trends in zero-day attack (ZdA) detection use collective anomaly detection to give insights on out-of-distribution anomalies in a zero-shot fashion. Among these, existing frameworks propose the use of specialised labelling strategies to mimic a step-wise abstract anomaly detection algorithm that generalise ZdA-detection over low-dimensional traffic-flow statistics. To enlarge such applicative scenarios, this paper proposes hero, which is compatible with High-dimensional raw-network traffic captures when performing zERO-day attack detection. To reach convergence over such a high-dimensional and noisy input space, hero decouples the representation task and the correspondent gradient updates from the discriminative task, following the neural algorithmic reasoning blueprint. Specifically, a neural processor is first trained on the discriminative task using synthetic data, and the weights are then frozen. A second training phase successfully optimises the encoding and decoding networks using raw-traffic captures and the algorithmically-aligned processor. Experiments with well-known intrusion detection datasets demonstrate the crucial advantage of using a two-stage training framework to achieve convergence. To the best of the authors’ knowledge, hero is the first deep learning-based instrument that performs collective anomaly detection and categorisation over raw network traffic on a zero-shot basis, i.e., without using labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信