{"title":"对小样本分类中样本关系的再思考","authors":"Guowei Yin , Sheng Huang , Luwen Huangfu , Yi Zhang , Xiaohong Zhang","doi":"10.1016/j.imavis.2025.105550","DOIUrl":null,"url":null,"abstract":"<div><div>Feature quality is paramount for classification performance, particularly in few-shot scenarios. Contrastive learning, a widely adopted technique for enhancing feature quality, leverages sample relations to extract intrinsic features that capture semantic information and has achieved remarkable success in Few-Shot Learning (FSL). Nevertheless, current few-shot contrastive learning approaches often overlook the semantic similarity discrepancies at different granularities when employing the same modeling approach for different sample relations, which limits the potential of few-shot contrastive learning. In this paper, we introduce a straightforward yet effective contrastive learning approach, Multi-Grained Relation Contrastive Learning (MGRCL), as a pre-training feature learning model to boost few-shot learning by meticulously modeling sample relations at different granularities. MGRCL categorizes sample relations into three types: intra-sample relation of the same sample under different transformations, intra-class relation of homogeneous samples, and inter-class relation of inhomogeneous samples. In MGRCL, we design Transformation Consistency Learning (TCL) to ensure the rigorous semantic consistency of a sample under different transformations by aligning predictions of input pairs. Furthermore, to preserve discriminative information, we employ Class Contrastive Learning (CCL) to ensure that a sample is always closer to its homogeneous samples than its inhomogeneous ones, as homogeneous samples share similar semantic content while inhomogeneous samples have different semantic content. Our method is assessed across four popular FSL benchmarks, showing that such a simple pre-training feature learning method surpasses a majority of leading FSL methods. Moreover, our method can be incorporated into other FSL methods as the pre-trained model and help them obtain significant performance gains.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"159 ","pages":"Article 105550"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking the sample relations for few-shot classification\",\"authors\":\"Guowei Yin , Sheng Huang , Luwen Huangfu , Yi Zhang , Xiaohong Zhang\",\"doi\":\"10.1016/j.imavis.2025.105550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Feature quality is paramount for classification performance, particularly in few-shot scenarios. Contrastive learning, a widely adopted technique for enhancing feature quality, leverages sample relations to extract intrinsic features that capture semantic information and has achieved remarkable success in Few-Shot Learning (FSL). Nevertheless, current few-shot contrastive learning approaches often overlook the semantic similarity discrepancies at different granularities when employing the same modeling approach for different sample relations, which limits the potential of few-shot contrastive learning. In this paper, we introduce a straightforward yet effective contrastive learning approach, Multi-Grained Relation Contrastive Learning (MGRCL), as a pre-training feature learning model to boost few-shot learning by meticulously modeling sample relations at different granularities. MGRCL categorizes sample relations into three types: intra-sample relation of the same sample under different transformations, intra-class relation of homogeneous samples, and inter-class relation of inhomogeneous samples. In MGRCL, we design Transformation Consistency Learning (TCL) to ensure the rigorous semantic consistency of a sample under different transformations by aligning predictions of input pairs. Furthermore, to preserve discriminative information, we employ Class Contrastive Learning (CCL) to ensure that a sample is always closer to its homogeneous samples than its inhomogeneous ones, as homogeneous samples share similar semantic content while inhomogeneous samples have different semantic content. Our method is assessed across four popular FSL benchmarks, showing that such a simple pre-training feature learning method surpasses a majority of leading FSL methods. Moreover, our method can be incorporated into other FSL methods as the pre-trained model and help them obtain significant performance gains.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"159 \",\"pages\":\"Article 105550\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885625001386\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625001386","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Rethinking the sample relations for few-shot classification
Feature quality is paramount for classification performance, particularly in few-shot scenarios. Contrastive learning, a widely adopted technique for enhancing feature quality, leverages sample relations to extract intrinsic features that capture semantic information and has achieved remarkable success in Few-Shot Learning (FSL). Nevertheless, current few-shot contrastive learning approaches often overlook the semantic similarity discrepancies at different granularities when employing the same modeling approach for different sample relations, which limits the potential of few-shot contrastive learning. In this paper, we introduce a straightforward yet effective contrastive learning approach, Multi-Grained Relation Contrastive Learning (MGRCL), as a pre-training feature learning model to boost few-shot learning by meticulously modeling sample relations at different granularities. MGRCL categorizes sample relations into three types: intra-sample relation of the same sample under different transformations, intra-class relation of homogeneous samples, and inter-class relation of inhomogeneous samples. In MGRCL, we design Transformation Consistency Learning (TCL) to ensure the rigorous semantic consistency of a sample under different transformations by aligning predictions of input pairs. Furthermore, to preserve discriminative information, we employ Class Contrastive Learning (CCL) to ensure that a sample is always closer to its homogeneous samples than its inhomogeneous ones, as homogeneous samples share similar semantic content while inhomogeneous samples have different semantic content. Our method is assessed across four popular FSL benchmarks, showing that such a simple pre-training feature learning method surpasses a majority of leading FSL methods. Moreover, our method can be incorporated into other FSL methods as the pre-trained model and help them obtain significant performance gains.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.