非线性多智能体系统在换向执行器故障下具有分层预定性能的领导-从者共识控制

IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Jinyu Ni , Yongduan Song , Xiucai Huang , Yulin Wang
{"title":"非线性多智能体系统在换向执行器故障下具有分层预定性能的领导-从者共识控制","authors":"Jinyu Ni ,&nbsp;Yongduan Song ,&nbsp;Xiucai Huang ,&nbsp;Yulin Wang","doi":"10.1016/j.automatica.2025.112332","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the distributed tracking control problem for networked multi-input multi-output (MIMO) strict-feedback nonlinear systems under the influence of unpredictable reversed control direction faults. Based on an intentionally imposed and more lenient controllability condition, we establish a novel hierarchical prescribed performance control (PPC) design framework, comprising two layers: (1) a first-order reference estimator design layer that addresses the distributed control problem by generating the reference signal for each agent; and (2) a reference tracking controller design layer that tracks the reference signals produced by the estimator. Both designs are implemented within a low complexity prescribed performance architecture, thereby enhancing the design flexibility and practical applicability. Notably, several Nussbaum functions are introduced into the reference tracking controller design and a novel recursive method is employed to tackle the challenges posed by reversing faults in stability analysis. Additionally, all closed-loop signals are proven to be globally uniformly ultimately bounded (GUUB). A simulation study demonstrates the efficacy of this method.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"177 ","pages":"Article 112332"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leader–follower consensus control with hierarchical prescribed performance for nonlinear multi-agent systems under reversing actuator faults\",\"authors\":\"Jinyu Ni ,&nbsp;Yongduan Song ,&nbsp;Xiucai Huang ,&nbsp;Yulin Wang\",\"doi\":\"10.1016/j.automatica.2025.112332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the distributed tracking control problem for networked multi-input multi-output (MIMO) strict-feedback nonlinear systems under the influence of unpredictable reversed control direction faults. Based on an intentionally imposed and more lenient controllability condition, we establish a novel hierarchical prescribed performance control (PPC) design framework, comprising two layers: (1) a first-order reference estimator design layer that addresses the distributed control problem by generating the reference signal for each agent; and (2) a reference tracking controller design layer that tracks the reference signals produced by the estimator. Both designs are implemented within a low complexity prescribed performance architecture, thereby enhancing the design flexibility and practical applicability. Notably, several Nussbaum functions are introduced into the reference tracking controller design and a novel recursive method is employed to tackle the challenges posed by reversing faults in stability analysis. Additionally, all closed-loop signals are proven to be globally uniformly ultimately bounded (GUUB). A simulation study demonstrates the efficacy of this method.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"177 \",\"pages\":\"Article 112332\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825002250\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825002250","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了网络多输入多输出(MIMO)严格反馈非线性系统在不可预测的反向控制故障影响下的分布式跟踪控制问题。基于有意施加的更宽松的可控性条件,我们建立了一种新的分层规定性能控制(PPC)设计框架,该框架由两层组成:(1)一阶参考估计器设计层,通过为每个代理生成参考信号来解决分布式控制问题;(2)参考跟踪控制器设计层,用于跟踪估计器产生的参考信号。两种设计都是在低复杂度的规定性能架构下实现的,从而提高了设计的灵活性和实用性。值得注意的是,在参考跟踪控制器设计中引入了几个Nussbaum函数,并采用了一种新颖的递归方法来解决稳定性分析中反转故障带来的挑战。此外,还证明了所有闭环信号都是全局一致最终有界的。仿真研究验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leader–follower consensus control with hierarchical prescribed performance for nonlinear multi-agent systems under reversing actuator faults
This paper explores the distributed tracking control problem for networked multi-input multi-output (MIMO) strict-feedback nonlinear systems under the influence of unpredictable reversed control direction faults. Based on an intentionally imposed and more lenient controllability condition, we establish a novel hierarchical prescribed performance control (PPC) design framework, comprising two layers: (1) a first-order reference estimator design layer that addresses the distributed control problem by generating the reference signal for each agent; and (2) a reference tracking controller design layer that tracks the reference signals produced by the estimator. Both designs are implemented within a low complexity prescribed performance architecture, thereby enhancing the design flexibility and practical applicability. Notably, several Nussbaum functions are introduced into the reference tracking controller design and a novel recursive method is employed to tackle the challenges posed by reversing faults in stability analysis. Additionally, all closed-loop signals are proven to be globally uniformly ultimately bounded (GUUB). A simulation study demonstrates the efficacy of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信