{"title":"双管纳米吸管的电容补偿提高扫描离子电导显微镜的电流检测","authors":"Futoshi Iwata , Naoto Fukuzawa , Hitoshi Inomata , Kenta Nakazawa , Toshi Nagata , Hideya Kawasaki , Osamu Hoshi","doi":"10.1016/j.ultramic.2025.114149","DOIUrl":null,"url":null,"abstract":"<div><div>We developed a method to improve the current-detection response of scanning ion conduction microscopy (SICM) using a double-barrel nanopipette. By detecting the difference between the two signals from each channel, capacitive currents can be canceled out, resulting in an improved ion current detection response and reduced imaging time in bias-modulated scanning ion conductance microscopy operated with AC bias voltages (BM-SICM). Furthermore, this method can reduce the synchronized capacitive current noise of two adjacent channels of a double-barrel nanopipette by canceling each other via a differential operation. Therefore, an improved detection signal was achieved even in the SICM operated with a DC bias voltage by reducing the noise from the piezoelectric scanner. As demonstrated by the proposed method, chromosomes that were difficult to observe owing to their strong negative charges were clearly imaged in the BM-SICM operated with an AC bias voltage without artifacts caused by surface charging. Additionally, in SICM operating with a DC bias voltage, dynamic interaction among an intracellular short rod, <em>Listeria monocytogenes</em>, and Caco-2 human enterocyte-like cells was successfully observed.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"273 ","pages":"Article 114149"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacitance compensation on a double-barrel nanopipette for improving current detection of scanning ion conductance microscopy\",\"authors\":\"Futoshi Iwata , Naoto Fukuzawa , Hitoshi Inomata , Kenta Nakazawa , Toshi Nagata , Hideya Kawasaki , Osamu Hoshi\",\"doi\":\"10.1016/j.ultramic.2025.114149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We developed a method to improve the current-detection response of scanning ion conduction microscopy (SICM) using a double-barrel nanopipette. By detecting the difference between the two signals from each channel, capacitive currents can be canceled out, resulting in an improved ion current detection response and reduced imaging time in bias-modulated scanning ion conductance microscopy operated with AC bias voltages (BM-SICM). Furthermore, this method can reduce the synchronized capacitive current noise of two adjacent channels of a double-barrel nanopipette by canceling each other via a differential operation. Therefore, an improved detection signal was achieved even in the SICM operated with a DC bias voltage by reducing the noise from the piezoelectric scanner. As demonstrated by the proposed method, chromosomes that were difficult to observe owing to their strong negative charges were clearly imaged in the BM-SICM operated with an AC bias voltage without artifacts caused by surface charging. Additionally, in SICM operating with a DC bias voltage, dynamic interaction among an intracellular short rod, <em>Listeria monocytogenes</em>, and Caco-2 human enterocyte-like cells was successfully observed.</div></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"273 \",\"pages\":\"Article 114149\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399125000488\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125000488","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
Capacitance compensation on a double-barrel nanopipette for improving current detection of scanning ion conductance microscopy
We developed a method to improve the current-detection response of scanning ion conduction microscopy (SICM) using a double-barrel nanopipette. By detecting the difference between the two signals from each channel, capacitive currents can be canceled out, resulting in an improved ion current detection response and reduced imaging time in bias-modulated scanning ion conductance microscopy operated with AC bias voltages (BM-SICM). Furthermore, this method can reduce the synchronized capacitive current noise of two adjacent channels of a double-barrel nanopipette by canceling each other via a differential operation. Therefore, an improved detection signal was achieved even in the SICM operated with a DC bias voltage by reducing the noise from the piezoelectric scanner. As demonstrated by the proposed method, chromosomes that were difficult to observe owing to their strong negative charges were clearly imaged in the BM-SICM operated with an AC bias voltage without artifacts caused by surface charging. Additionally, in SICM operating with a DC bias voltage, dynamic interaction among an intracellular short rod, Listeria monocytogenes, and Caco-2 human enterocyte-like cells was successfully observed.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.