一种实用的日前和日内现货市场电价情景生成方法

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chrysanthi Papadimitriou , Jan C. Schulze , Alexander Mitsos
{"title":"一种实用的日前和日内现货市场电价情景生成方法","authors":"Chrysanthi Papadimitriou ,&nbsp;Jan C. Schulze ,&nbsp;Alexander Mitsos","doi":"10.1016/j.compchemeng.2025.109118","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing interest in demand-side management (DSM) as part of the energy cost optimization calls for effective methods to determine representative electricity prices for energy optimization and scheduling investigations. We propose a practical method to construct price profiles of day-ahead (DA) and intraday (ID) electricity spot markets. We construct single-day and single-week price profiles based on historical market time series to provide ready-to-use price data sets. Our method accounts for dominant mechanisms in price variation to preserve critical statistical features (e.g., mean and standard deviation) and transient patterns in the constructed profiles. Unlike common scenario generation approaches, the method is deterministic, with few degrees of freedom and minimal application effort. Our method ensures consistency between ID and DA price profiles when both are considered and introduces profile scaling to enable multiple scenario generation. Finally, we compare the constructed profiles to clustering techniques in a DSM case study, noting similar cost results.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"199 ","pages":"Article 109118"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical scenario generation method for electricity prices on day-ahead and intraday spot markets\",\"authors\":\"Chrysanthi Papadimitriou ,&nbsp;Jan C. Schulze ,&nbsp;Alexander Mitsos\",\"doi\":\"10.1016/j.compchemeng.2025.109118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing interest in demand-side management (DSM) as part of the energy cost optimization calls for effective methods to determine representative electricity prices for energy optimization and scheduling investigations. We propose a practical method to construct price profiles of day-ahead (DA) and intraday (ID) electricity spot markets. We construct single-day and single-week price profiles based on historical market time series to provide ready-to-use price data sets. Our method accounts for dominant mechanisms in price variation to preserve critical statistical features (e.g., mean and standard deviation) and transient patterns in the constructed profiles. Unlike common scenario generation approaches, the method is deterministic, with few degrees of freedom and minimal application effort. Our method ensures consistency between ID and DA price profiles when both are considered and introduces profile scaling to enable multiple scenario generation. Finally, we compare the constructed profiles to clustering techniques in a DSM case study, noting similar cost results.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"199 \",\"pages\":\"Article 109118\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009813542500122X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542500122X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

作为能源成本优化的一部分,对需求侧管理(DSM)的兴趣日益增加,需要有效的方法来确定能源优化和调度调查的代表性电价。我们提出了一种实用的方法来构建日前(DA)和日内(ID)电力现货市场的价格曲线。我们根据历史市场时间序列构建单日和单周价格概况,以提供随时可用的价格数据集。我们的方法考虑了价格变化的主要机制,以保留构建剖面中的关键统计特征(例如,均值和标准差)和瞬态模式。与常见的场景生成方法不同,该方法是确定性的,具有很少的自由度和最小的应用程序工作。我们的方法确保在考虑ID和DA价格配置文件时两者之间的一致性,并引入配置文件缩放以实现多场景生成。最后,我们将构建的概要文件与DSM案例研究中的聚类技术进行比较,注意到相似的成本结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A practical scenario generation method for electricity prices on day-ahead and intraday spot markets

A practical scenario generation method for electricity prices on day-ahead and intraday spot markets
The increasing interest in demand-side management (DSM) as part of the energy cost optimization calls for effective methods to determine representative electricity prices for energy optimization and scheduling investigations. We propose a practical method to construct price profiles of day-ahead (DA) and intraday (ID) electricity spot markets. We construct single-day and single-week price profiles based on historical market time series to provide ready-to-use price data sets. Our method accounts for dominant mechanisms in price variation to preserve critical statistical features (e.g., mean and standard deviation) and transient patterns in the constructed profiles. Unlike common scenario generation approaches, the method is deterministic, with few degrees of freedom and minimal application effort. Our method ensures consistency between ID and DA price profiles when both are considered and introduces profile scaling to enable multiple scenario generation. Finally, we compare the constructed profiles to clustering techniques in a DSM case study, noting similar cost results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信