{"title":"基于卷积和长短期记忆神经网络的机器人地形分类","authors":"YiGe Hu","doi":"10.1016/j.cogr.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Robotic mobility remains constrained by complex terrains and technological limitations, hindering real-world applications. This study presents a terrain classification framework integrating Fourier transform, adaptive filtering, and deep learning to enhance adaptability. Leveraging CNNs, LSTMs, and an attention mechanism, the approach improves feature fusion and classification accuracy. Evaluations on the Tampere University dataset demonstrate an 81 % classification accuracy, validating its effectiveness in terrain perception and autonomous navigation. The findings contribute to advancing robotic mobility in unstructured environments.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 166-175"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic terrain classification based on convolutional and long short-term memory neural networks\",\"authors\":\"YiGe Hu\",\"doi\":\"10.1016/j.cogr.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Robotic mobility remains constrained by complex terrains and technological limitations, hindering real-world applications. This study presents a terrain classification framework integrating Fourier transform, adaptive filtering, and deep learning to enhance adaptability. Leveraging CNNs, LSTMs, and an attention mechanism, the approach improves feature fusion and classification accuracy. Evaluations on the Tampere University dataset demonstrate an 81 % classification accuracy, validating its effectiveness in terrain perception and autonomous navigation. The findings contribute to advancing robotic mobility in unstructured environments.</div></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"5 \",\"pages\":\"Pages 166-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241325000102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robotic terrain classification based on convolutional and long short-term memory neural networks
Robotic mobility remains constrained by complex terrains and technological limitations, hindering real-world applications. This study presents a terrain classification framework integrating Fourier transform, adaptive filtering, and deep learning to enhance adaptability. Leveraging CNNs, LSTMs, and an attention mechanism, the approach improves feature fusion and classification accuracy. Evaluations on the Tampere University dataset demonstrate an 81 % classification accuracy, validating its effectiveness in terrain perception and autonomous navigation. The findings contribute to advancing robotic mobility in unstructured environments.