基于卷积和长短期记忆神经网络的机器人地形分类

YiGe Hu
{"title":"基于卷积和长短期记忆神经网络的机器人地形分类","authors":"YiGe Hu","doi":"10.1016/j.cogr.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Robotic mobility remains constrained by complex terrains and technological limitations, hindering real-world applications. This study presents a terrain classification framework integrating Fourier transform, adaptive filtering, and deep learning to enhance adaptability. Leveraging CNNs, LSTMs, and an attention mechanism, the approach improves feature fusion and classification accuracy. Evaluations on the Tampere University dataset demonstrate an 81 % classification accuracy, validating its effectiveness in terrain perception and autonomous navigation. The findings contribute to advancing robotic mobility in unstructured environments.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 166-175"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic terrain classification based on convolutional and long short-term memory neural networks\",\"authors\":\"YiGe Hu\",\"doi\":\"10.1016/j.cogr.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Robotic mobility remains constrained by complex terrains and technological limitations, hindering real-world applications. This study presents a terrain classification framework integrating Fourier transform, adaptive filtering, and deep learning to enhance adaptability. Leveraging CNNs, LSTMs, and an attention mechanism, the approach improves feature fusion and classification accuracy. Evaluations on the Tampere University dataset demonstrate an 81 % classification accuracy, validating its effectiveness in terrain perception and autonomous navigation. The findings contribute to advancing robotic mobility in unstructured environments.</div></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"5 \",\"pages\":\"Pages 166-175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241325000102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人的移动性仍然受到复杂地形和技术限制的制约,阻碍了现实世界的应用。本文提出了一种融合傅里叶变换、自适应滤波和深度学习的地形分类框架,以增强其自适应能力。该方法利用cnn、lstm和注意机制,提高了特征融合和分类精度。对坦佩雷大学数据集的评估表明,分类准确率达到81%,验证了其在地形感知和自主导航方面的有效性。这一发现有助于提高机器人在非结构化环境中的机动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robotic terrain classification based on convolutional and long short-term memory neural networks
Robotic mobility remains constrained by complex terrains and technological limitations, hindering real-world applications. This study presents a terrain classification framework integrating Fourier transform, adaptive filtering, and deep learning to enhance adaptability. Leveraging CNNs, LSTMs, and an attention mechanism, the approach improves feature fusion and classification accuracy. Evaluations on the Tampere University dataset demonstrate an 81 % classification accuracy, validating its effectiveness in terrain perception and autonomous navigation. The findings contribute to advancing robotic mobility in unstructured environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信