InfiniteOpt.jl中无限维优化问题的建模与求解进展

IF 3 Q2 ENGINEERING, CHEMICAL
Evelyn Gondosiswanto, Joshua L. Pulsipher
{"title":"InfiniteOpt.jl中无限维优化问题的建模与求解进展","authors":"Evelyn Gondosiswanto,&nbsp;Joshua L. Pulsipher","doi":"10.1016/j.dche.2025.100236","DOIUrl":null,"url":null,"abstract":"<div><div>This paper details two extensions for the unifying abstraction behind <span>InfiniteOpt.jl</span>: infinite-dimensional generalized disjunctive programming (InfiniteGDP) and GPU-compatible direct transcription solution techniques with an abstraction called InfiniteSIMD-NLP. <span>InfiniteOpt.jl</span> is a Julia package that provides an efficient framework for formulating and solving a wide range of infinite-dimensional optimization (InfiniteOpt) problems. The InfiniteGDP abstraction builds upon traditional GDP techniques to enable intuitive modeling of discrete events and complex logic over continuous domains (e.g., position, time, and/or uncertainty); this abstraction is implemented in <span>InfiniteDisjunctiveProgramming.jl</span>. Moreover, the InfiniteSIMD-NLP abstraction, implemented in <span>InfiniteExaModels.jl</span>, exploits the recurrent structure of transcribed InfiniteOpt problems to efficiently discretize, differentiate, and solve such problems on high performance CPU and GPU architectures. We use a diverse set of case studies in dynamic, PDE-constrained, and stochastic optimization to demonstrate the relative merits of these abstraction extensions. The results demonstrate the utility of the InfiniteGDP abstraction to model continuous space–time switching constraints and how the InfiniteSIMD-NLP abstraction is able to accelerate the solution of InfiniteOpt problems by one to two orders-of-magnitude relative to existing state-of-the-art approaches.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"15 ","pages":"Article 100236"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances to modeling and solving infinite-dimensional optimization problems in InfiniteOpt.jl\",\"authors\":\"Evelyn Gondosiswanto,&nbsp;Joshua L. Pulsipher\",\"doi\":\"10.1016/j.dche.2025.100236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper details two extensions for the unifying abstraction behind <span>InfiniteOpt.jl</span>: infinite-dimensional generalized disjunctive programming (InfiniteGDP) and GPU-compatible direct transcription solution techniques with an abstraction called InfiniteSIMD-NLP. <span>InfiniteOpt.jl</span> is a Julia package that provides an efficient framework for formulating and solving a wide range of infinite-dimensional optimization (InfiniteOpt) problems. The InfiniteGDP abstraction builds upon traditional GDP techniques to enable intuitive modeling of discrete events and complex logic over continuous domains (e.g., position, time, and/or uncertainty); this abstraction is implemented in <span>InfiniteDisjunctiveProgramming.jl</span>. Moreover, the InfiniteSIMD-NLP abstraction, implemented in <span>InfiniteExaModels.jl</span>, exploits the recurrent structure of transcribed InfiniteOpt problems to efficiently discretize, differentiate, and solve such problems on high performance CPU and GPU architectures. We use a diverse set of case studies in dynamic, PDE-constrained, and stochastic optimization to demonstrate the relative merits of these abstraction extensions. The results demonstrate the utility of the InfiniteGDP abstraction to model continuous space–time switching constraints and how the InfiniteSIMD-NLP abstraction is able to accelerate the solution of InfiniteOpt problems by one to two orders-of-magnitude relative to existing state-of-the-art approaches.</div></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"15 \",\"pages\":\"Article 100236\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508125000201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文详细介绍了InfiniteOpt背后统一抽象的两个扩展。jl:无限维广义析取规划(InfiniteGDP)和gpu兼容的直接转录解决方案技术,抽象称为InfiniteSIMD-NLP。InfiniteOpt。jl是一个Julia包,它提供了一个有效的框架,用于制定和解决广泛的无限维优化(InfiniteOpt)问题。InfiniteGDP抽象建立在传统GDP技术的基础上,可以直观地对连续域(例如位置、时间和/或不确定性)上的离散事件和复杂逻辑进行建模;这个抽象在InfiniteDisjunctiveProgramming.jl中实现。此外,InfiniteSIMD-NLP抽象,在InfiniteExaModels中实现。jl,利用转录的InfiniteOpt问题的循环结构,在高性能CPU和GPU架构上有效地离散、区分和解决此类问题。我们使用动态、pde约束和随机优化方面的各种案例研究来演示这些抽象扩展的相对优点。结果证明了InfiniteGDP抽象在建模连续时空切换约束方面的实用性,以及InfiniteSIMD-NLP抽象如何能够将infinitopt问题的解决速度提高一到两个数量级,相对于现有的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances to modeling and solving infinite-dimensional optimization problems in InfiniteOpt.jl
This paper details two extensions for the unifying abstraction behind InfiniteOpt.jl: infinite-dimensional generalized disjunctive programming (InfiniteGDP) and GPU-compatible direct transcription solution techniques with an abstraction called InfiniteSIMD-NLP. InfiniteOpt.jl is a Julia package that provides an efficient framework for formulating and solving a wide range of infinite-dimensional optimization (InfiniteOpt) problems. The InfiniteGDP abstraction builds upon traditional GDP techniques to enable intuitive modeling of discrete events and complex logic over continuous domains (e.g., position, time, and/or uncertainty); this abstraction is implemented in InfiniteDisjunctiveProgramming.jl. Moreover, the InfiniteSIMD-NLP abstraction, implemented in InfiniteExaModels.jl, exploits the recurrent structure of transcribed InfiniteOpt problems to efficiently discretize, differentiate, and solve such problems on high performance CPU and GPU architectures. We use a diverse set of case studies in dynamic, PDE-constrained, and stochastic optimization to demonstrate the relative merits of these abstraction extensions. The results demonstrate the utility of the InfiniteGDP abstraction to model continuous space–time switching constraints and how the InfiniteSIMD-NLP abstraction is able to accelerate the solution of InfiniteOpt problems by one to two orders-of-magnitude relative to existing state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信