整合多个空间尺度的数据,以估计阿片类药物综合征的当地负担

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Eva Murphy , David Kline , Erin McKnight , Andrea Bonny , William C. Miller , Lance Waller , Staci A. Hepler
{"title":"整合多个空间尺度的数据,以估计阿片类药物综合征的当地负担","authors":"Eva Murphy ,&nbsp;David Kline ,&nbsp;Erin McKnight ,&nbsp;Andrea Bonny ,&nbsp;William C. Miller ,&nbsp;Lance Waller ,&nbsp;Staci A. Hepler","doi":"10.1016/j.sste.2025.100720","DOIUrl":null,"url":null,"abstract":"<div><div>The opioid epidemic has been particularly severe in Ohio, prompting significant efforts to understand its spatial patterns, mainly using available data at the county level. However, relying solely on county-level analysis can overlook crucial information relevant to localized effects. To address this, we integrate spatially misaligned data observed at the county and ZIP code levels to explore the complex interaction of five opioid-related outcomes, providing a more detailed local understanding of the opioid epidemic. We demonstrate how to map ZIP-code level data to ZIP-code Tabulation Areas (ZCTAs) and relate the county-level and ZCTA-level outcomes to a spatially correlated latent factor. The latent factor is defined on the intersection of the misaligned areal units, which provides a more granular understanding of the opioid epidemic. Furthermore, this approach allows us to identify areas with varying levels of opioid burden and reveals local regions with relatively high burden that county-level analyses might miss. Finally, we highlight the need for careful consideration when relying solely on ZIP code level data for naloxone, as it may lead to misinterpretations, particularly in rural regions.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"53 ","pages":"Article 100720"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating data at multiple spatial scales to estimate the local burden of the opioid syndemic\",\"authors\":\"Eva Murphy ,&nbsp;David Kline ,&nbsp;Erin McKnight ,&nbsp;Andrea Bonny ,&nbsp;William C. Miller ,&nbsp;Lance Waller ,&nbsp;Staci A. Hepler\",\"doi\":\"10.1016/j.sste.2025.100720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The opioid epidemic has been particularly severe in Ohio, prompting significant efforts to understand its spatial patterns, mainly using available data at the county level. However, relying solely on county-level analysis can overlook crucial information relevant to localized effects. To address this, we integrate spatially misaligned data observed at the county and ZIP code levels to explore the complex interaction of five opioid-related outcomes, providing a more detailed local understanding of the opioid epidemic. We demonstrate how to map ZIP-code level data to ZIP-code Tabulation Areas (ZCTAs) and relate the county-level and ZCTA-level outcomes to a spatially correlated latent factor. The latent factor is defined on the intersection of the misaligned areal units, which provides a more granular understanding of the opioid epidemic. Furthermore, this approach allows us to identify areas with varying levels of opioid burden and reveals local regions with relatively high burden that county-level analyses might miss. Finally, we highlight the need for careful consideration when relying solely on ZIP code level data for naloxone, as it may lead to misinterpretations, particularly in rural regions.</div></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"53 \",\"pages\":\"Article 100720\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584525000115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584525000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

俄亥俄州的阿片类药物疫情尤为严重,促使人们主要利用县一级的现有数据,努力了解其空间模式。然而,仅仅依靠县级分析可能会忽略与本地化效应相关的关键信息。为了解决这个问题,我们整合了在县和邮政编码层面观察到的空间错位数据,以探索五种阿片类药物相关结果之间复杂的相互作用,从而更详细地了解阿片类药物在当地的流行情况。我们展示了如何将邮政编码级数据映射到邮政编码表区(ZCTA),并将县级和邮政编码表区级结果与空间相关的潜在因素联系起来。该潜在因子定义在错位区域单位的交叉点上,从而提供了对阿片类药物流行的更精细的理解。此外,这种方法还能让我们确定阿片类药物负担程度不同的地区,并揭示县级分析可能遗漏的负担相对较重的局部地区。最后,我们强调在仅依赖邮政编码级别的纳洛酮数据时需要谨慎考虑,因为这可能会导致误读,尤其是在农村地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating data at multiple spatial scales to estimate the local burden of the opioid syndemic
The opioid epidemic has been particularly severe in Ohio, prompting significant efforts to understand its spatial patterns, mainly using available data at the county level. However, relying solely on county-level analysis can overlook crucial information relevant to localized effects. To address this, we integrate spatially misaligned data observed at the county and ZIP code levels to explore the complex interaction of five opioid-related outcomes, providing a more detailed local understanding of the opioid epidemic. We demonstrate how to map ZIP-code level data to ZIP-code Tabulation Areas (ZCTAs) and relate the county-level and ZCTA-level outcomes to a spatially correlated latent factor. The latent factor is defined on the intersection of the misaligned areal units, which provides a more granular understanding of the opioid epidemic. Furthermore, this approach allows us to identify areas with varying levels of opioid burden and reveals local regions with relatively high burden that county-level analyses might miss. Finally, we highlight the need for careful consideration when relying solely on ZIP code level data for naloxone, as it may lead to misinterpretations, particularly in rural regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信